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CHAPTER 1
INTRODUCTION

1.1 Introduction

Damage can occur in civil engineering structures either gradually from operational loading
events during their service lives or abruptly from severe loading events during natural disasters.
From a serviceability or a safety point of view, it is essential to inspect structures periodically for
damaged components. Based on the obtained information of damage, important decisions can be

made regarding the rehabilitation of the structure.

During the past few decades, many nondestructive evaluation methods have been developed
to assess general integrity of structures that are suspected of damage. These methods can be
viewed as either local or global. Local experimental methods are mainly designed for local inves-
tigation of structural components. The examples of these methods are visual inspection, ultrason-
ic or acoustic methods, magnetic field methods, radiographs, thermal field methods and eddy-
current methods (Bray and Stanley 1989). Although these techniques are adequate for a detailed
local examination. they require that the structural components be readily accessible and that the
vicinity of the damage be known a priori. These methods tend to be cost prohibitive for large-
scale civil engineering structures. Global methods that use forced structural response as a mean
of nondestructively evaluating large structures have been viewed as a much more powerful alter-
native. Recently. this damage detection technique has drawn considerable attention in the litera-
ture (Doebling ¢t al. 1996). The basic idea is that modal properties, such as natural frequencies
and mode shapes. are functions of the physical properties of the structure; thus, changes in the
physical properties or damage will cause changes in the modal properties. The main problem in
global nondestructive evaluation is essentially how to use these changes to extract damage infor-
mation from a structure. An effective damage identification scheme should be able to determine

the damage locations as well as to assess the severity of damage to those parts of the structure.

To develop a useful global damage identification scheme, noise and sparseness of the mea-

sured modal data must be taken into account. Measurement noise is inevitable. If one does not



consider noise and its random nature, the damage evaluation algorithm may not provide accurate
results. In addition to noise, spatial sparseness of measured modal response presents a main prob-
lem in developing a robust damage detection scheme. Most civil engineering structures require
a large number of degrees of freedom in a finite element model due to their size and complexity,
however, only a limited number of physical locations can be practically measured. It is cost pro-
hibitive or impossible to measure modal displacements at every degree of freedom of the struc-

ture.

A robust damage detection scheme should be able to account for noise and sparseness of the
measured structural response, to accurately identify multiple damage locations, and to provide
some estimate of the severity of damage. The aim of this research is to develop such an algorithm
for damage detection with sparse and noisy data and to evaluate the performance of that algorithm

using a suite of benchmark numerical simulation problems.

1.2 Literature Review of Damage Identification Algorithms from Modal Response

The idea of using shifts in natural frequency to detect damage in a structural system was
introduced in the literature in the late 1960s (Lifshitz and Rotem 1969). The observation that
changes in structural properties cause changes in vibration frequencies was the impetus for using
modal methods in damage identification. Early attempts were made to model damage mathemati-
cally, then the measured frequencies were compared to the predicted frequencies to determine
damage (Vandiver 1975; Begg et al. 1976; Wojnarowski et al. 1977; Cawley and Adams 1979).
Some researchers have tried to also calculate the damage parameters, e.g., crack length and/or
location, from the frequency shift (Adams et al. 1978; Stubbs et al. 1990; Stubbs and Osegueda
1990a; 1990b). However, it is not clear that changes in modal frequencies alone can be used to

identify more than the existence of damage in the structure.

In the early 1980s, the use of mode shape information for the location of structural damage
was introduced in the literature (West 1984; Yuen 1985). Mode shape derivatives, such as curva-
ture and modal strain energy have also been used to obtain spatial information about structural
changes (Pandey et al. 1991; Stubbs et al. 1992; Chance et al. 1994; Dong et al. 1994). The use

of mode shape information in addition to the modal frequencies has been shown to be very prom-



ising. Some researchers have used direct comparisons between the measured modal data of the
damaged structure and the baseline structure to detect damage (Yuen 1985; Pandey et al. 1991;
Yao et al. 1992). These direct methods can be used only in a global manner to identify the exis-
tence of damage in a structural system. Further, they cannot provide a quantitative measure of

the severity of structural damage.

A popular alternative to the direct comparison methods is based on the perturbation of struc-
tural model matrices, such as mass, stiffness, and damping, to reproduce the measured modal re-
sponse data. These methods solve for the updated matrices by forming a constrained optimization
problem based on the structural equations of motion, the nominal model, and the measured data.
Comparisons of the updated matrices to the original correlated matrices provide an indication of
damage and can be used to quantify the location and extent of damage. Most of these algorithms
detect damage by nodal perturbation of structural matrices (Chen and Garba 1988; Agbabian et
al. 1991; Zimmerman and Kaouk 1992; Kim and Bartkowicz 1993); thus they have difficulties
in defining a structural model due to problems with maintaining mass orthogonality and preserv-
ing load path. A more attractive approach is to update the element-level parameters rather than
the nodal components of the structural matrices (Hajela and Soeiro 1990a; 1990b; Li and Smith
1994; Shin and Hjelmstad 1994; Doebling 1996). In this approach, damage can be assessed by
examining changes in the estimated element parameters for a structural model. However, it may
be difficult to justify how much change will indicate damage when measured data are noise-pol-

luted.

Some rescarch attempts have been made to introduce nonlinearity into structural systems as
aresult of damage (Lin and Ewins 1990; Krawczuk and Ostachowicz 1992; Manson et al. 1993).
In this case. the initially linear-elastic structure is considered to behave in a nonlinear manner
after the damage has been introduced. These methods are applicable to only the classes of prob-

lems where the structural nonlinearity can be incorporated into the structural model.

Another class of damage identification methods is the use of neural network methods to esti-
mate and predict the location and extent of damage in the structure (Kudva et al. 1991; Wu et al.

1992; Manning 1994; Schwarz et al. 1996). Although the non-parametric nature of neural net-



works is useful for complex structures, an excessive amount of measured modal data from differ-

ent damage cases is required to train the algorithm before it can be used for damage identification.

In summary, recent research attempts have been focused on damage evaluation schemes that
use various system identification techniques to evaluate properties of structural models from the
measured modal information. The main differences among these methods lie in the choice of the
system identification method used to evaluate the structural properties and how damage is de-
fined in the structural model. Still, it remains uncertain which method will perform best in global

damage detection of real-life structures.

A number of challenges exist in the practical application of global damage detection using
the measured modal response of a structure. The focuses of the present study are on incomplete-
ness of the measured data and the presence of the measurement noise. In general, measurements
obtained from a modal testing will be discrete and sparsely distributed over the spatial domain
of the test structure. Furthermore, only the first few natural modes will be accessible through test-
ing. In addition, measured data are generally polluted with random measurement errors. These

measurement errors can dramatically affect the accuracy of the damage detection results.

A successful damage detection algorithm from the measured response of a structure requires
that the measurement noise and the sparseness of data be taken into account. Almost all of the
proposed algorithms in the literature failed to consider these crucial aspects in their develop-
ments. Shin and Hjelmstad (1994) are among the first few researchers to consider these aspects
in developing their damage detection and assessment algorithm. They proposed the adaptive pa-
rameter grouping scheme to overcome the sparseness problem by grouping the element constitu-
tive parameters hierarchically in a depth-first search to localize damage. A data perturbation
scheme was proposed for an assessment of damage to account for noise in the measurements. The
adaptive parameter-grouping scheme has been shown to be successful in dealing with noisy and
sparse measured data. However, it has some drawbacks in lack of computational efficiency and
can fail to detect multiple damage locations when damage is spatially isolated throughout the en-

tire structure.



1.3 Objective and Scope

The objective of this research is to develop an efficient damage detection and assessment al-
gorithm for structural systems using spatially sparse and noise-polluted modal response. We
characterize a structural system by a parameterized finite-element model and we estimate the val-
ues of the system parameters using a least-squares minimization of the modal displacement resid-
ual. We infer damage from changes in the constitutive properties of elements in the finite element
model of the structure. Based on the adaptive parameter-grouping scheme of Shin and Hjelmstad
(1994), we propose a new parameter group-updating scheme that has enhanced capability of lo-
calizing multiple damage with sparse measurements. The proposed algorithm takes into account
the solution multiplicity of the parameter estimation problem arising from using sparse and noisy
data. A unified approach, based on the method of random starting points (Hjelmstad 1996) and
the optimum sensitivity analysis (Araki and Hjelmstad 2000), for determining solution clustering
is used to identify multiple solutions and to assess which of the solutions is the best one. This best
solution provides the basis for deciding which parameter group should be subdivided in the pa-
rameter group-updating process. In addition, the selective near-optimal measurement set is used
as input to the parameter estimation problem to reduce the effect of measurement errors. To ac-
count for the effect of noise on the parameter estimates, the data perturbation scheme of Shin and
Hjelmstad (1994) is used to generate a Monte Carlo sample of parameter estimates, and damage
is assessed by comparing the statistical distribution of the member parameters for the damaged

and the associated baseline structure.

We demonstrate the use of the damage detection and assessment algorithm on two example
structures: a planar bridge truss and a three-dimensional tower truss. Numerical simulation stud-
ies are emploved to examine the capabilities of the algorithm in detecting and assessing damage.
The numerical simulation procedure is selected over the real case study because our objective is
to quantify the performance of the algorithm rather than to plainly illustrate its use. In the simula-
tion process, the measured data are generated by adding proportional random errors to the analyti-
cal modal response of a finite-element model of the structure. This allows us to investigate differ-
ent levels of noise in the measurements by simply varying the amplitude of the imposed random

€ITOrS.



A number of assumptions have been adopted in the current study. First, a refined finite ele-
ment model of the structure is defined. Second, the baseline or undamaged properties of the struc-
ture are given a priori. Third, the amplitude of noise in the measurements is known. Fourth, the
mass of the structure does not change as a result of damage. Finally, damage is regarded as a drop
in the stiffness parameter of the structural element, and hence nonlinearity effects are not taken

1nto account.

The manuscript consists of six chapters and one appendix. Chapter 1 is an introduction. A
number of research works in the area of global damage detection are briefly summarized in this
chapter. Chapter 2 addresses the issues of structural modeling and estimation of system parame-
ters from measured modal response. A new parameter estimation algorithm, based on the output
error estimator of Banan and Hjelmstad (1993), is described. The proposed algorithm is adopted
as the main tool for estimating structural parameters for the proposed damage detection scheme
in Chapter 3. The random starting point scheme of Hjelmstad (1996) is adopted to take into ac-
count non-uniqueness of modal parameter estimation arising from using spatially sparse data.
In addition, the optimum sensitivity method of Araki and Hjelmstad (2000) is presented to obtain
sensitivities of the system parameters in the presence of measurement errors. A heuristic method
to select a near-optimal subset of measurement locations is illustrated with a simple numerical
example. In Chapter 3, a parameter group-updating scheme is developed to localize damage with
sparse data taking into account the non-uniqueness problem of parameter estimation and the sen-
tivity of parameter estimates to the measurement noise. Based on the statistical distributions of
the system parameters, a new procedure for assessing the severity of damage is established. In
Chapter 4. simulation studies are carried out for a two-dimensional bridge truss. A simulated
single component of damage as well as multiple damage cases are investigated for different levels
of simulated measurement noise. Through simulation studies, the procedure of detecting and as-
sessing damage is illustrated. In Chapter 5, the damage detection and assessment algorithm is ap-
plied to a three-dimensional tower truss. The response of a constructed finite-element model of
the tower structure in three spatial dimensions is expected to replicate the true behavior of the
structure. Two damage scenarios with different levels of noise are considered in this chapter.

Chapter 6 summarizes principal findings obtained from the current study and discusses future



research work. Appendix illustrates the application of the data perturbation scheme of Shin and
Hjelmstad (1994) to obtain the sensitivity information for the clusters of solutions around the

noise-free multiple solutions to a parameter estimation problem.



CHAPTER 2
STRUCTURAL MODELING AND PARAMETER ESTIMATION

2.1 Introduction

Large or complex structures present a particular challenge in detection of damage —a chal-
lenge that is not adequately addressed by local methods, which require a close proximity of the
excitation and measurement to the damage site. Global methods, in which the entire structure is
excited and the response is measured at certain places, are better suited to the task of locating dam-
age in a complex structure. One such testing environment, usually referred to as modal testing,
measures the natural frequencies and mode shapes of the structure using resonant forced vibration
(Ewins 1984). Damage detection methods that make use of the measured mode shapes and natural
frequencies are called modal methods (Hjelmstad and Shin 1996; Law et al. 1998; Kosmatka and
Ricles 1999).

A successful global damage detection method using the measured modal response of a struc-
ture requires accurate characterization of the measurement information by the established struc-
tural model. In addition, proper inclusion of damage into the selected structural model is essential
to simulating the true behavior of the damaged structure. In general, the choice of how damage
is incorporated into the analytical model of a structure is inextricably linked to the selection of
the model itself. In this chapter, the issues of structural modeling and definition of damage in the
structural model are addressed. A new parameter estimation algorithm, using a symmetrized ver-
sion of the error function of the output-error least squares estimator of Banan and Hjelmstad
(1993), is proposed to improve computational efficiency of parameter estimation from measured
modal response. The present algorithm will be adopted as the main tool for estimating structural
parameters for the damage detection scheme in Chapter 3. The issue of uniqueness of solution
to the parameter estimation problem arising from using sparse and noise-polluted measurements
is discussed. A random starting point scheme (Hjelmstad 1996) is proposed to search for possible

solutions and the optimum sensitivity method (Araki and Hjelmstad 2000) is used to evaluate the



sensitivity of multiple solutions to the measurement noise. To reduce the effect of measurement
noise on the estimated parameters, a heuristic method is presented to select a near-optimal subset
of degrees of freedom with measurement information as input to the parameter estimation prob-

lem. A numerical example is provided to illustrate the method and examine the performance of

the proposed algorithm.

2.2 Structural Modeling and Definition of Damage

Damage in a civil engineering structure is typically referred to localized deterioration of some
components of the structure. This deterioration can be a complete loss of function in the parts or
a degradation of stiffness or mass properties of the structure to some level. In order to assess the
severity of damage in a structural system, a qualitative measure of damage in the structural model

must be defined.

Mathematically, damage can be defined either in the parameter domain or in the model struc-
ture domain. In the model structure domain, explicit modifications are made to the structural
model to account for damage. For example, the number of degrees of freedom of the finite ele-
ment model can be increased by regarding damage as an extra element, the type of damping used
in the structural model can be modified after damage, or the structural behavior can be changed
from linear to non-linear as a result of damage. These approaches are not well suited to the dam-
age detection problem in large or complex structures due to the difficulties in modifying the struc-
tural model. Further, they are limited to only a few classes of problems where the analytical model
of the structure can be directly modified to account for damage. On the other hand, in the parame-
ter domain damage can be regarded as changes of the structural model parameters, such as are-
duction in stiffness, an increase or a decrease in inertia, and a modification to the damping coeffi-
cients. Because no modification to the structural model is required for this approach, it is more

attractive to the task of global damage detection.

The selection of an appropriate parameter estimation algorithm is also of equal importance
to how damage is regarded in the structural model. The parameterization of the structural model
is implicitly determined by the parameter estimation method used to evaluate the structural pa-

rameters from the measured response of the structure. Generally, a parameter estimation algo-



rithm identifies properties of a structure from the measured data either by estimating the compo-
nents of the structural matrices associated with the structural degrees of freedom or by estimating
the element constitutive parameters of the model structure. Since damage is commonly associat-
ed with the structural element behavior, the latter approach is more attractive because changes

in the estimated parameters are often a direct indication of damage.

Let us assume that a structure can be characterized by a linear finite element model with N,
degrees of freedom. The modal response of the structure is determined by the contribution of the
element constitutive parameters in the stiffness matrix K and the material density properties com-
posing the mass matrix M, respectively. The linear stiffness K of the structure is parameterized
by N, constitutive parameters x, each of which can change as a result of damage. We assume that
the mass M of the structure does not change during the damage process and can be viewed as
constant. Damage can be inferred from a drop in an element constitutive parameter value between
two time-separated inferences as shown in Figure 2.1. From this notion of damage, the baseline
properties of the structure can be regarded as a set of parameters associated with an undamaged
or a lesser damaged state of the structure. In the current study we assume that the baseline values
of parameters are known in advance (for example, from a previous application of this same proce-

dure).

AN

. x(t)

x(t) A

Ax, = x(to) — x(th)

\ ax, = x(ty) ~ x(t)

S

-
o

t t t t

Figure 2.1 The definition of damage as a drop in element constitutive paramater value.
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The truss elements in Figure 2.1 is usually modeled with a single stiffness parameter (i.e., the
axial stiffness). A drop in the axial stiffness parameter of a truss element directly indicates dam-
age in the element. However, the situation can be complicated for other types of structural ele-
ments with multiple modes of deformation. It may be important to represent each mode of de-
formation separately using multiple stiffness parameters since it is not clear which mode of
behavior of a structural element governs the structural response of a damaged structure. In the
literature, some researchers determine damage as a reduction in the value of a selected dominant
parameter in the structural element, while others detect damage by investigating the changes of
all available parameters. Shin and Hjelmstad (1994) observed from simulation studies that the
use of the flexural stiffness parameter in a Timoshenko beam element to represent damage pro-
duced a more reliable damage detection result than using the shear stiffness parameter. Based on
the results of their study, it was concluded that a single dominant stiffness parameter can be used
to accurately identify damage in a structural member. The key task is to decide which parameter,
of all the available ones, will best represent damage in the structural model. This aspect of the

problem is not included in the scope of the present study.

2.3 A Parameter Grouping Scheme

The number of unknown constitutive parameters in a parameterized finite element model of
a large or complex structure can be large compared to the available measured information. One
approach to reduce the number of unknowns is to use the substructuring method (Lim 1990;
Natke 1989). However, there are several drawbacks to this approach; for example, a substructure
must be a connected region of the structure, and the subregion stiffness may comprise stiffnesses
of varying characters. An alternative approach is to group similar parameters together without
changing the finite element model of the structure (Hjelmstad et al. 1990). This technique has
the merit of curing the two problems of the substructure method. In addition, the parameter
grouping approach is better suited for civil engineering structures whose models are typically
composed of a limited number of different element types, and thus can be parameterized by a

small number of parameter groups.
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Let us assume herein that each of the elements in the structural model can be assigned to one
of the parameter groups {£2,, £2,, ..., £, } where N,is the number of different parameter groups
in the model. Let us further assume that a group of elements £2, can be characterized by a set of
stiffness parameters x, = {x}, x4, ..., x} } such that the subset of parameters associated with ele-
ment m € Q, are x,. The set of parameters x, contains N, parameters. The parameter x is the
ith parameter in group £2,. This representation accomodates the possibility of multiple stiffness
parameters in each structural element (e.g., Young’s modulus and Poisson’s ratio for linear elastic
solid, the bending and shear stiffness for beams). It should be noted that each parameter group

can comprise only the structural elements of the same type.

Based on the parameter grouping scheme, the linear stiffness matrix of the model can be writ-
ten as (Shin and Hjelmstad 1994)

Ny

KX =K, + > > Ku(x) 2.1)

k=1 mee,

where K, is the fixed part of the stiffness matrix associated with elements having parameters with
known values and K, (x,) is the stiffness matrix of element m having parameters from the group

Q.. The element stiffness matrix can often be decomposed as

K (x,) = z Fr(x)Gr 2.2)

where f(x) is the (possibly nonlinear) constitutive parameter function, and G7" is the kernel ma-
trix for the ith stiffness type of element m. The element kernel matrices essentially contain the
geometrical information of the structural element, and are independent of the element constitu-

tive parameters.
The total number of stiffness parameters N, in the structural model can be computed as
NS
N, = >N, (2.3)
k=1

where, as mentioned earlier, N, is the number of different stiffness types for the kth parameter

group, which depends on the type of elements comprising that group.
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2.4 Parameter Estimation from Measured Modal Response

One of the key issues in the development of the current damage detection algorithm is the
selection of the parameter estimation scheme from the measured modal response of a structure.
In this section, we derive a symmetrized version of the error function of the output-error least
squares estimator of Banan and Hjelmstad (1993) to improve computational efficiency of modal
parameter estimation. The output error estimator is chosen among other methods because of its
ability to handle spatially sparse data sets without sacrificing computional efficiency. In addition,
the output error estimator has an acceptable amount of bias for a wide range of measurement

noise. The output error estimator is cast as the following least-squares optimization problem

N
Minimize J(x) = %—z 0| e(x) || (2.4)
x € R
where &, is the weight factor for the ith modal case and N,, is the number of modes with measured
natural frequencies and mode shapes. This problem is often solved as a constrained minimization
with bounding values on the parameters. Different estimators can be defined within the context
of least-squares by using different definitions of the error term e,(x), which represents either the
force imbalance or displacement residual. In the current study, the output error e,(x) is defined
as the difference between the measured and equivalent modal displacements at the sampling loca-
tions. Free undamped vibrational response of a structure gives rise to the generalized eigenvalue

problem
K(x)p: = AM¢, (2.5)

in which 4, and @, represent the eigenvalue (the square of the natural frequency) and the eigen-

vector (mode shape) for the ith vibration mode.

Let us assume that the first N,, natural frequencies and natural modes can be obtained from
a modal test. For each mode, we assume that the frequency is measured accurately and that the
mode shape is sampled at certain discrete locations. We assume that these measurement locations
correspond with degrees of freedom of the finite element model of the structure. In particular,

we define the set of degrees of freedom associated with measurement locations on the test struc-
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ture as R and we define the set of remaining degrees of freedom as X. Moreover, we denote the
number of measured and unmeasured degrees of freedom as N, and N,, respectively. As such,
we can partition the measured eigenvector and the structural system matrices based on these two

sets. To wit, we reorder and partition the ith eigenvector as

~

3 o,
o, =P =|_ (2.6)
o,

where P is a column permutation of the identity matrix, ¢, and ¢, are the submatrices of the €i-
genvector components associated with the measured and unmeasured degrees of freedom, re-

spectively. In addition, the structural matrices can be reordered as
K = PKP7; and M = PMP" (2.7)

Let us partition the reordered mass matrix as follows
154” 1.‘?“ (2.8)
M, M

where M,, is the portion of the mass matrix associated with the measured degrees of freedom of

the structural model and M,, is the part associated with unmeasured degrees of freedom. We de-

— _ | 0 M,
ae s ]

With the above definitions, we introduce the matrix B,(x) = K(x) — A,M. A straightforward ma-

fine the partitioned mass matrices as

= R

12]; and M

22

nipulation of equation (2.5) yields the equivalent expression

B.(x)®, = AMQ, (2.10)

The right hand side of the above equation involves only the measured response ¢, rather than a

complete response vector. Also, it should be noted that the proposed B,(x) is symmetric, which
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is different from the definition of Banan and Hjelmstad (1993). With these definitions, a measure

of error for the output error estimator can be defined as

e(x) = ¢, — 2QB (XM, (211)

where the boolean matrix Q extracts the components of the response vector associated with mea-

sured degrees of freedom from the complete eigenvector by the relationship of (f)i = Q0.

For the above parameter estimation problem, an index of identifiability can be defined as

B = NﬁNd 2.12)

This index represents the ratio of available data to the unknowns. The parameter estimates are
completely unreliable if B < 1. The parameter estimation is possible if 8 > 1. The chance that the
estimates will be reliable increases with the value of 8. The constrained least-squares problem
(2.4) can be solved using a recursive quadratic programming algorithm. The computations can
be based on the Gauss-Newton approximation of the Hessian of the objective to avoid computing
second derivatives of the error function e,(x). The implementation of the algorithm is described

in detail by Banan and Hjelmstad (1993).

Conventional parameter estimation schemes using a simple minimization of equation (2.4)
can give rise to non-uniqueness of solutions when the measured data are spatially sparse and
noise-polluted. The technique of regularization has been employed to overcome the problem of
non-uniqueness of solution to the parameter estimation problem from measured data (Ge and
Soong 1998: Yeo et al. 2000). In the regularization technique, the original error function is modi-
fied by adding a positive definite regularization function. The relative magnitude of the regular-
ization function to the primary error function is adjusted by the regularization factor, which must
be determined during the minimization process for a consistent regularization effect. In general,
the regularization function represents a penalty term for limiting the values of the estimated pa-
rameters to lie in the vicinities of certain nominal parameters. This method assumes that the de-
sired parameters are close to the nominal parameters, and that there are no spurious solutions in

the neighborhood of the correct solution. For many applications this assumption is not tenable,
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for example, in damage detection problems one cannot assume that the parameters of the dam-

aged model are necessarily closed to the values of the baseline parameters.

2.5 Non-uniqueness of Modal Parameter Estimation

The structural parameter estimation from measured modal response using an output error
least-squares estimator can give rise to multiple solutions if the data are spatially sparse (Hjelm-
stad 1996). Generally, the data are called sparse if the measurement locations are few,
]\A/d/Nd < 1, if the number of measured modes is few, N,/N, <1, or if both are few,
N ,,,]\Af ./N? < 1 (Hjelmstad and Shin 1997). The extra solutions in the parameter estimation prob-
lem are local minima of the parameter estimation objective function and are probably extraneous.
The existence of multiple solutions to the parameter estimation problem complicates the damage
detection process since successful isolation of damaged elements depends upon identifying the
correct solution from among the many choices. Ignoring the possibility of solution multiplicity

leads either to erroneous damage locations or else the algorithm fails to converge at all.

In the literature, only a few articles have been devoted to the question of uniqueness of solu-
tion in the structural parameter estimation problem. Some of the proposed algorithms address the
problem of uniqueness by finding the solution nearest to a set of nominal model parameters. Such
methods assume that the desired parameters are close to the nominal parameters, and that there
are no spurious solutions in the neighborhood of the correct solution. These assumptions are not
tenable for global damage detection since the parameter estimates of the damaged structural mod-
el are not necessarily close to the values of the parameters associated with the baseline structure.
One approach to the non-uniqueness problem is to use a random starting point scheme in con-
junction with the objective minimization algorithm to find all of the multiple minima of the pa-
rameter estimation problem (Hjelmstad 1996). With a sufficiently large sample of starting points,

one can assess the multiplicity of solutions with confidence.

Hjelmstad (1996) observed that for noise-free simulated measurements the correct solution
can generally be distinguished from the extraneous solutions by a considerably larger and deeper
basin of attraction, which is indicated by a larger fraction of solutions attracted from the random

starting points and a lower average value of the objective function. The situation is more compli-
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cated for noise-polluted data, where parameter estimates are scattered due to noise. The identi-
fied multiple solutions exhibit different levels of sensitivity to random noise for different patterns
of measurement. Further, the sensitivity of the parameter estimates to noise in the data depends
upon the number and density of solutions to the parameter estimation problem. Nevertheless, the
study showed that there is a clear connection between multiple solutions associated with noise-

free data and the distinct clusters of results with noisy data.

In the following sections, we present a general framework for using an error sensitivity analy-
sis of parameter estimates to improve the outcome of parameter estimation from measured modal
response. In particular, we show how the random starting point method can be used to generate
populations of parameter estimates for a given parameter estimation problem and how clustering
of the population can be used to identify the correct solution to the parameter estimation problem.
Based on the study of Hjelmstad (1996), the correct solution is identified using the value of the
parameter estimation objective function associated with the mean of the parameter estimates for
each solution cluster. The method generalizes well to problems for which visualization tools are
not useful (i.e., any problem with more than two or three parameters). A heuristic method is pre-
sented to reduce the effect of the measurement noise on the parameter estimation results by select-
ing a subset of degrees of freedom with measurement information to be used as input to the pa-
rameter estimation problem. The eigenvalues of the covariance matrix of parameter estimates
associated with the identified solution are used to determine which measurement location should
be dropped at each level of the measurement selection process. The proposed algorithm will later

be incorporated into the damage detection and assessment scheme in Chapter 3.

2.5.1 Identification of Multiple Solutions

The solution of the parameter estimation problem (2.4) depends upon the topography of the
objective function J(x). When the measured data are spatially sparse, the objective function is
usually nonlinear and multiple minima are possible. Each local minimum represents a candidate
solution to the parameter estimation problem. The final outcome of the iterative parameter es-
timation process depends on the initial guess of parameters x° that must be specified to start the

iteration. Each starting point converges to the minimum within its basin of attraction (that is the

17



definition of the basin of attraction). The situation is illustrated in Figure 2.2 for a three-dimen-
sional parameter space. In this illustration, we assume that there are two solutions, X, and X;.
From the seven starting points {x3, xJ, ..., X3}, five of them converge to one or the other of the
two solutions while starting points x? and x? get bound at the constraints x, = O and x, = x7,
respectively. Also, in the illustration the shaded area inside the rectangular paralellepiped repre-
sents a feasible domain of the parameter estimates determined by the lower bounds {x}, x3, x5}
and the upper bounds {xV, x¥, x{'}, respectively. These bounds must be selected properly in order
for the parameter estimates to make any physical sense. Often, parameter values can be set to zero
as natural lower bounds. The upper bounds, however, must be selected so that they provide suffi-

ciently large domain for possible solutions to the parameter estimation problem.

Since it is impossible to know in advance the number of solutions for equation (2.4) and their
distribution, we need an algorithm that can extract as much useful information as possible from
our parameter estimation problem. We implemented the random starting point scheme proposed
by Hjelmstad (1996). The idea of creating random points on an x-y plane is extrapolated to an
N,-dimensional parameter space to accommodate a general N,-parameter model. In the current

algorithm, a sample of N, random starting points {x9, X3, ..., X},} is generated. Each of these

A
U
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X‘l] .W\gj? X5
Xg
0
x0 X5ous
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Figure 2.2 The result of parameter estimation from different starting points.
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starting points will converge to a solution that is a member of a subset of all possible solutions
to the parameter estimation problem. To assess the multiplicity of solutions with confidence, one

must use a sufficiently large sample of starting points.

In this study we assume prior knowledge of the baseline structural model. In addition, we ac-
cept the notion of damage as a reduction of parameter values from the baseline values. As such,

we will select our starting points from within a bounded region centered at the point associated
with the known baseline parameters, X". In particular, to avoid starting from points that are likely
to get stuck at bounding constraints, the ith starting point is chosen to lie within a hyper-ellipsoid
centered at X*. Towit, let x° denotes the ith starting point in the N,-dimensional parameter space.

The ith starting point is allowed into the sample only if
(x — X)AX —X) < 1 (2.13)

where A denotes a scaling matrix, which is defined as A = diag[1/x* 1/%; .. 1/x;] The
idea of restricting the starting parameter values is shown schematically for a three-dimensional
parameter space in Figure 2.3 where x;, X;, and x; are the three components of the vector of base-
line parameters. In this figure, the shaded area inside the rectangular paralellepiped bounded at
{xY, x¥, xU} represents the feasible domain of the parameter estimates.

1 3

2.5.2 Measurement Error Sensitivity Analysis of Multiple Solutions

The multiplicity of solutions in modal parameter estimation is further complicated by the
presence of noise in the measured data. Typically, different sets of noisy measurements will yield
different outcomes of parameter estimation due to the effect of noise on the topography of the
objective function J(x). To account for the sensitivity of system parameters due to noise, Shin
and Hjelmstad (1994) adopted a data perturbation scheme to generate a Monte Carlo sample of
parameter estimates by adding a random perturbation with known statistical properties to the
measured data. To wit, the jth component of the perturbed eigenvector is calculated from the jth

component of the ith measured eigenvector as

$, = ¢,(1 + an,) (2.14)
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Figure 2.3 The schematic representation of the simulated random starting points.

where 7, is a uniform random variate in the range [ — 1, 1]. The noise amplitude a can be varied
to study the sensitivity of parameter estimates to noise in the measured data. It should be noted
that the data perturbation scheme can be applied to obtain the sensitivity information for each of
the multiple solutions identified from the random starting point scheme by using the individual
solution as a fixed starting point for each perturbed data set. In addition, since each perturbation
iteration requires one execution of the parameter estimation algorithm, the Monte Carlo approach
can be computationally intensive as the number of perturbation iterations becomes large. A nu-
merical example in which the Monte Carlo method is applied to simulate the sensitivity of noise-

free solutions to the measurement noise is shown in Appendix.

In the Monte Carlo method, once a sample of solution points has been created using the ran-

dom starting point and the data perturbation schemes, the correct solution must be identified
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based upon the available solutions in the sample. In general, each of these solution points will
be clustered in the vicinities of the noise-free solutions as shown in Figure 2.4 for a three-dimen-
sional parameter space. In this figure we assume that four solution points {X,, Xs, X, Xp} have
been identified from the random starting points. The groups of solutions essentially represent
clustering of local minima of the perturbed objective functions. The distribution of the solution
points within each clustered location indicates the sensitivity of alocal minimum of the objective
function J(x) due to the random perturbation. As such, each individual cluster can be regarded

as a set of perturbed solutions to the parameter estimation problem.

In general, the correct set, or cluster, of solutions can be distinguished from the extraneous
ones by a considerably larger and deeper basin of attraction. The latter condition is indicated by
alower averaged objective function. A precise set of parameter estimates is the one that is insensi-
tive to noise and is indicated by the compactness of the cluster. For a simple structural model with
two or three parameters, the measure of compactness can be obtained directly from the plot of
the solution points on a three-dimensional parameter space. However, this is not the case for an

N,

-parameter model where such a plot is not feasible. As such, a mathematical description of

a cluster is required.

One can use the statistical properties of the solutions inside a cluster to identify its shape. For

example, the mean and standard deviation can be used to measure bias and spread of the solutions

X3 A

-'.@v',&
. n'... > xz

Xy

Figure 2.4 Noisy solution points in three-dimensional parameter space.
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due to the data perturbation, respectively. However, as illustrated in Figure 2.5 for a two-parame-
ter case, the standard deviation may not provide sufficient information to identify the correct
shape of a cluster. On the other hand, the eigenvalues of the covariance matrix of the estimated
parameters provide a more accurate basis for estimating the appearance of a cluster. The covaria-

nce matrix of parameters for cluster A can be computed as

Rx = lezx,@xi _J%AZX"@J%ZX" (2.15)

where N, is the number of solutions belonging to the cluster A and ® indicates the tensor prod-
uct. In general, the parameter estimates are accurate if the eigenvalues of the covariance matrix

are small.

As previously mentioned, the Monte Carlo method is computationally expensive because the
nonlinear optimization process is repeated many times. Alternatively, one can obtain the sensitiv-
ity of parameter estimates to random perturbation by using the optimum sensitivity approach
(Araki and Hjelmstad 2000). In this method, the mean and covariance of system parameters are
estimated using the optimum sensitivity derivatives, which can be computed by direct differenti-
ation of the Kuhn-Tucker optimality criterion. As such, the method is computationally effienci-
ent compared with the Monte Carlo approach. In addition, this approach is generally more effi-

cient than the finite difference approach used by Sanayei et al. (1992), and does not require the

........

» X, > X

Figure 2.5 Two different statistical descriptions of a cluster. o,, Standard deviations; A,, eigenva-
lues.

22



assessment of numerical errors. However, the optimum sensitivity method may be unreliable
when the system output-system parameters relation is highly nonlinear, in which case the Monte
Carlo method is more robust. In the current study, we implement the optimum sensitivity method
to determine the sensitivity of the parameter estimation solutions with respect to the data per-

turbation scheme.

Let us define a measurement vector of mode shapes as @7 = {&){, &;, vey ({)},m} such that 43k
denotes the kth component of the vector @ in which k = 1,2, .., N, ,,,]\A/'d. Based on the perturba-
tion method (Liu et al. 1986; Papadimitriou et al. 1997), let the mean and covariance of the per-

turbed measurements be computed as
® = E[®] (2.16)

R® = E[(® - ®) @ (D — )] 2.17)

where ® represents a perturbed vector of the measured mode shapes. For a certain solution X,
formerly determined using the random starting points, we can estimate the mean X, and covarian-
ce R* of parameter estimates due to the measurement perturbation using the following approxi-

mation (Araki and Hjelmstad 2000)

NN, NN,

%, = E[x(®)] ~ x,(@) + 1> > x,u(®)R: (2.18)
R = E[(x(®) — X4(®)) ® (xo(®) — %u(D))] (2.19)
= MZJ iXAk(&)) ® XA,I(&))RI?I

k=1 I=1

In the above equations, the first and second-order optimum sensitivity derivatives are indicated
by X, . = 39X,/ aék and X, , = 02X,/ acﬁkaqs,, respectively. These derivatives can be obtained by
solving systems of linear equations consisting of the gradient terms of the error function e,(x) as
defined in equation (2.11). If the random perturbation of amplitude a is determined in accord with

equation (2.14), equations (2.18) and (2.19) can be rewritten as
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NN, ~ ~
(@) = X\(®) + £ > x, u(P)P (2.20)
k=1
NN, . R
R+a) = § ) %,,(P) @ X, (D) (221)
k=1

The calculation of mean and covariance of parameter estimates associated with the individual
solution can be repeated for each of the clusters around the noise-free multiple solutions pre-
viously identified from the random starting point scheme. Nevertheless, we focus our attention
on the correct set, or cluster, of solutions to the parameter estimation problem that corresponds
to the cluster of global minima of the objective function J(x) as defined in equation (2.4). In par-
ticular, we calculate the objective function J(X) that corresponds to the mean of parameter esti-
mates X with respect to the random perturbation for each solution cluster. The mean of the global

minima X can be obtained as the set of parameters X associated with the minimum J(X).

2.5.3 Selection of Measurement Locations for Error Reduction

Spatial location of measurements and the level of noise in the measured data can dramatically
affect the accuracy of parameter estimation (see, for example, Sanayei et al. 1992; Hjelmstad
1996). By using the measurements at a certain subset of model degrees of freedom, one can limit
error in the parameter estimates due to the measurement noise. A number of heuristic methods
have been proposed in the literature to select a near-optimal set of noise-polluted measurement
locations. These methods were originally used in the context of selecting the sensor and actuator
locations to control the dynamic response of the structure (Skelton and Delorenzo 1983; Haftka
and Adelman 1985; Kammer 1991). Sanayei et al. (1992) introduced the use of Delorenzo’s
method in selecting the subsets of noisy force and displacement measurements to reduce the error
in the static parameter estimation prior to the nondestructive testing. Error sensitivity analysis
was used to determine the smallest subset of applied force and measured displacement degrees
of freedom that causes small errors in the identified parameters. In particular, the largest element
of the error sensitivity matrix of parameter estimates identified by the finite difference method
was used as an index for comparison between different set of measurements. This approach re-

quires extra computations of the input-output error relationship to guarantee the improvement
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of the results using the selected measurement locations. In addition, the method is limited to the
case of a pretest simulation study in which one must select the near-optimal sensor location be-
fore measurements are made (i.e., it is not applicable in selection of the measurement set that re-

duces error in the parameter estimates after the measurements are obtained).

A heuristic method, which makes use of the error sensitivity analysis of Section 2.5.2, is de-
scribed herein to select a near-optimal subset of the noisy measurement locations. The method
takes into account the possibility of solution multiplicity of the modal parameter estimation prob-
lem. Unlike the finite difference approach of Sanayei et al. (1992), Monte Carlo simulations are
not required to establish the input-output error relationships of the identified parameters in the
present method. Moreover, the algorithm provides a natural basis for the parameter grouping
scheme of Section 2.3. It should be noted that the identified subset of measurement locations is
not guaranteed to minimize the error in the parameter estimates. Selection of the best subset of
measurements requires an exhaustive search of different combinations of the measured degrees
of freedoms and, hence, the process can be computationally intensive. The present method is
aimed to assist in the selection of a near-optimal subset of the measurement locations that causes

a relatively small error in the parameter estimation results.

Let us suppose that a set of measurement locations <i>° is given as known information. One
can find a set of multiple solutions to the parameter estimation problem of (2.4) corresponding
to &)o from which the mean of the global optima i"(&)o) can be identified. In general, the mean
of the global optima is associated with the minimum value of J(X) as described in the previous
section. Moreover. the eigenvalues of the covariance matrix of parameter estimates R™, evaluat-
ed from equation (2.21), can be used to determine the sensitivity of X" to the random perturbation.
As mentioned earlier, the estimated parameters are expected to be accurate when these eigenva-
lues are small. In the current algorithm, we use the value of objective function and we sum the
squares of the eigenvalues of the covariance matrix associated with the cluster of global minima
to measure the accuracy and the sensitivity of the parameter estimation results, respectively. In
particular, we devise a search scheme to find a set of measured locations that minimizes J1 (x")

as well as the sum of the squares of the eigenvalues of R™".
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The selection of the near-optimal subset of measurement locations can be described as an
integer programming process as illustrated in Figure 2.6. In the illustration, the GPE (global pa-
rameter estimation) algorithm indicates the process of finding the mean of the global minima of
the parameter estimation objective function using the random starting point scheme and the opti-
mum sensitivity analysis. IAIII addition, the sum of the squares of the covariance matrix of parame-
ters x is defined as s = ilf(R"). It should be noted that when a measurement location is
dropped, the mode shape iiiformation at the dropped location is disregarded for all measured

modes.

The proposed algorithm provides explicit information on the sensitivity of parameter esti-
mates as well as the objective function to the expected level of measurement noise for each of
the measurement patterns investigated. The value of the objective function is used to guarantee
the improvement in the values of the parameter estimates. Hence, there is no computational bur-

den of re-examining the parameter estimation results for the selected subset of measurements.

1. Initialization

l.a.Set i =0, <i),~ = <i>o is given data.

1.b. Compute X, by GPE algorithm. N,

Lc. Compute J, = J(%;', ®.), R, = R¥(®,), 5o = > AX(R.).
i=1

2. Measurement selection process

2.a. If insufficient data remains, EXIT.

26.Doj = 1,.., N,
2bi. Set Jo. =T, j.. = 0.
2.b.i. Create <i>f’) by dropping the jth entry in @, for all modes.
2.b.iii. Solve for X;” by GPE algorithm. N,
2.b.iv. Compute J® = J(x", ®9), R? = R%(®9), s? = > 1HRY).
2.bv. If JO < J . then jo, =j. i=1

2.c.8et @, <= (i?m), Jiog = J0m), 5,0 = 50,

2.d. Test convergence.
If J,.; > J; or 5;.; > s; then EXIT

2.e.Set N,= N, - 1.

2.f. Goto2.a.

Figure 2.6 Algorithm for selection of the near-optimal subset of measurement locations.

26



Nevertheless, the system output-system parameter relationship can become highly nonlinear
when the level of uncertainty in the measurement is excessive or when the measured data are ex-
tremely sparse in which case the sensitivity analysis using the Monte Carlo approach will give

better results.

In practice, the proposed strategy for finding the near-optimal set of measurement locations
can be used either in a pretest simulation study prior to a nondestructive testing or to reduce error
of the parameter estimation results for a given data set. In the case where a single noisy data set
is given, the algorithm will search for the near-optimal set of measurements that produces small
errors in the parameter estimates for the model structure. In the pretest simulation study, however,
finding the near-optimal measurement sets is more useful than finding the near-optimal mea-
surement set because there are usually many factors that affect the selection of the sensor loca-
tions other than those considered in this study (e.g., feasibility of the required number of sensors,
accessibility of the sensor locations). In that case, Monte Carlo simulations can be used to create
a sample of noisy measurements for the nominal model of the structure after which the near-opti-

mal measurcment sets can be obtained for each of the simulated noisy measurements.

2.6 A Numerical Example

In this section. we examine the performance of the present algorithm through a simulation
study. The example structure is the six-story shear building with fixed base as shown in Figure
2.7. The structural model has six degrees of freedom, the horizontal translations at the story lev-
els. from w kit ali of them are initially measured as illustrated in the figure. The structure is para-
meterized w it iy parameters, X = {X,, X,, ..., X;}~. The stiffness of the ith story is given by
k, = x4 Tn. n wunal properties of the structure is chosen such that ko/m, = 1.2 /sec?. Let us
assumc that tt.. s tual parameters associated with the current conditions of the structure are
x = {2.0.2¢ 2110, 1.0.1.0} . Note that the prior knowledge of the actual values of parame-
ters is not requircd 1n the current algorithm; these values are mainly used to illustrate the results
of the simulation study and are regarded as unknowns in the estimation of structural parameters.

In the current study, we assume that the baseline paramaters associated with the initial structure

are given as x” = {3.0, 3.0, 2.0, 2.0, 1.0, 1.0} ™. The specified values of baseline parameters are
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Figure 2.7 The six-degree-of-freedom shear building.

used in the random starting point scheme to identify the multiple solutions to the parameter es-
timation problem for each pattern of measurements investigated. These values can be selected
to be different from the above set without significantly changing the results of the simulation
study. The current sets of parameters might reflect a damage scenario in which {x,, x,} and x,

have decreased by 33% and 50%, respectively.

The results from a free vibrational analysis of the current structural model are shown in Table
2.1 where the ith mode shape ¢, is scaled such that $M¢; = 1. From this table, the natural fre-
quencies and mode shapes of all six modes are taken as our a priori known database. As such,
the measurement vector can be written as P = {&){, » L (f)}}. To study the effect of measure-
ment noise, we generate noisy measurement data by adding uniform random variates with known

statistical properties to the noise-free data. To wit, we calculate the k&th component of the /th noisy

measurement vector from the kth component of the computed noise-free measurement vector as

B, = D1 + eLy) 2.22)

where £, is a uniform random variate in the range [ — 1, 1]. The amplitude & will be used in our

study to quantify the level of noise in the measurement. Throughout the study we will assume
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Table 2.1 Noise-free data from free vibrational analysis of the current structure.

1t Mode 27 Mode 3td Mode 4th Mode  5th Mode 6t Mode

Natural Frequency (Hz)  0.05350 0.14050 0.22465 0.30364 0.34424 0.45008

Mode Shape
Level 1 0.03263  -0.09481 -0.10439 0.12439  -0.18499 -0.17133
Level 2 0.06373  -0.15884 -0.12212 0.06013  -0.00938 0.22824
Level 3 0.09183  -0.17129 -0.03847 -0.09533 0.18452 -0.13273
Level 4 0.13937  -0.08495 0.19270 -0.11710  -0.14704 0.02988
Level 5 0.17380 0.05656 0.10393 0.21631 0.09464 -0.00666
Level 6 0.19186 0.16133 -0.15740 -0.10639  -0.03265 0.00118

that the natural frequencies can be measured with negligible error and are considered to be noise-

free.

During the measurement selection process in the algorithm, different patterns of measure-
ments are used as input to the parameter estimation problem. Each case that we examine will be
designated by the degrees of freedom which are measured, for example, the measurement case
12-4-6 uses modal displacements at levels 1, 2, 4 and 6 and does not use measurements at levels
3 and 5. In any measurement case, all of the six available modes will always be used as our mea-

sured information.

In the current simulation study, we generate 100 noisy data sets based upon the noise-free
data from Table 2.1 in accord with equation (2.22) using three levels of noise: & = 5%, 10% and
20 . respectively. Each of the simulated noisy data sets are used as input for the initial measure-
ment case from which the algorithm is performed to selectively eliminate the measured degrees
of freedom until the near-optimal set of measurement locations is obtained. As such, the algo-
rithm will converge to different subsets of measurement locations for different noisy data sets.
For a certain noisy measurement case during the elimination process, we use 100 random starting
points to identify multiple solutions to the parameter estimation problem. The mean of the global
minima X" can be located using the optimum sensitivity analysis as described previously. Conse-

quently, we can compute the mean of the parameter estimates and the sum of the squares of the
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eigenvalues of the covariance matrix associated with the cluster of the global minima in accord
with équations (2.20) and (2.21), respectively. Note that the amplitude of perturbation & in these
equations should be selected as the same as the level of noise present in the measured data. In the
present simulations, we assume the prior knowledge of the level of uncertainty in the measure-
ment. Thus, the amplitudes of perturbation can be selected asa =0.05, 0.1 and 0.2 to character-
ize the bias and scatter of parameter estimates for the 5%, 10% and 20% noisy measurement

cases, respectively.

Several measures of identification error are used to compare the parameter estimation results
of the initial and the identified patterns of measurements. To wit, we compute the average of X™
for a specified pattern of measurements based upon a certain subset of the simulated noisy data-

base as

N,
=. 1 Z_..
X —N " (2.23)

where X;” denotes the parameter estimates associated with the mean of the global minima for the
tth noisy measurement set of the N, simulated data sets under consideration. With the definition

of X, the average root quadratic bias (RQB) can be defined as

5 -3
ROB =517 229

in which X are the actual parameters for the current structural model and N, is the number of
estimated parameters as defined by equation (2.3). The quadratic bias is a measure of the distance
between the expected value of the estimates X and the actual parameters X. To measure the scat-
ter of the parameter estimates with respect to the actual parameters, we use the average root mean

square error (RMS). which is given by

, 2
[ﬁ; I 5 uz]

RMS = ~
WARY

(2.25)

Notice that both RQB and RMS are normalized with respect to the norm of actual parameters.
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The results of an error sensitivity analysis for the case of complete measurements (123456)
are shown in Figure 2.8. In the figure, the values of the stiffness parameters obtained from equa-
tion (2.18) are plotted with respect to 100 noisy data sets for different levels of measurement
noise. It should be noted that the solution to the parameter estimation problem for the complete
measurement case is unique for each particular noisy data set and, hence, the multiplicity of solu-
tion can be disregarded. It is observed that the majority of the parameter estimates are quite far
from the actual values. There is a tendency for the parameter estimation algorithm to overesti-
mate. The variation of the parameter estimates is likely to increase with the level of noise in the
measurements. The case with 20% noise level shows the greatest scatter and bias of the parameter

estimation results.

The subsets of the near-optimal measurement locations obtained by the algorithm using dif-
ferent noisy data sets are shown in Table 2.2. The table reports the subsets of measurement loca-
tions and the corresponding fractions of the 100 noisy data sets that the algorithm converged for
different levels of noise. For example, a fraction of 0.14 of the 5% noisy data sets for the measure-
ment case 123-56 indicates that the algorithm converged to this set of measurements for a total
of 14 data sets (out of a sample of generated 100 data sets with 5% noise). Let us examine a se-
lected pattern of measurements 1----- with 10% noise in Table 2.2. We can plot the sum of the
squares of the eigenvalues of the covariance matrix for parameter estimates associated with dif-
ferent sequences of measurement locations during the elimination process as shown in Figure 2.9.
In this figure, A, denotes the ith eigenvalue of the covariance matrix. One can see that the sum
of the squares of the eigenvalues decreases exponentially during the measurement selection pro-
cess for each of the simulated noise trials. The reduction of the eigenvalues of the covariance ma-
trix indicates that the outcome of the parameter estimation problem corresponding to the identi-

fied measurement locations are less sensitive to noise.

The identification errors of the parameter estimation results as defined by equations (2.25)
and (2.26) for the complete measurement case and the identified subsets of measurement loca-
tions from Table 2.2 are illustrated in Figure 2.10. In the illustration, Case 0 denotes the complete
measurement case. The average root quadratic bias (RQB) and the average root mean square error

(RMS) are calculated based on the noisy data sets that converged to each particular measurement
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Figure 2.8 Variation of the parameter estimates with respect to different noisy data sets using
complete measurements with three levels of noise.
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Table 2.2 Fraction of 100 noisy data sets converging to different patterns of measurements for
5%, 10%, and 20% level of measurement noise.

5% Noise 10% Noise 20% Noise

st Mol Fmoton ot Miaped Frcion T Niepe Fraction
1 123-56 0.14 1 1-—--- 0.22 1 1-——-- 0.19
2 1--emm 0.14 2 123-56 0.15 2 123-56 0.17
3 --3--- 0.11 3 “=3ee- 0.09 3 --3--- 0.14
4 -23-5- 0.07 4 12--5- 0.08 4 -23-5- 0.12
5 -2--=- 0.07 5 -23-5- 0.08 5 12--5- 0.07
6 ---4-6 0.06 6 -2==e- 0.05 6 -2---- 0.06
7 12--5- 0.05 7 1--4-6 0.04 7 12-4-- 0.04
8 --34-6 0.05 8 12-—-- 0.04 8 1-345- 0.03
9 1-34-6 0.04 9 -—-4-- 0.04 9 -==4-- 0.03
10 12-=m~ 0.04 10 12-45- 0.03 10 --34-6 0.02
11 1--4-6 0.03 11 -234-6 0.03 11 1--4-- 0.02
12 12-4-- 0.03 12 12-4-- 0.03 12 --3-5- 0.02
13 -—=4-- 0.03 13 --==5- 0.02 13 -—=-5- 0.02
14 123-5- 0.02 14 1234-- 0.01 14 123-5- 0.01
15 12-45- 0.02 15 123-5- 0.01 15 123--6 0.01
16 1-345- 0.02 16 1-345- 0.01 16 1-34-6 0.01
17 1--45- 0.02 17 1-34-6 0.01 17 -234-6 0.01
18 1--4-- 0.02 18 -2345- 0.01 18 1--4-6 0.01
19 12-4-6 0.01 19 -23-56 0.01 19 12---- 0.01
20 1-3-56 0.01 20 1-3--6 0.01 20 1----6 0.01
21 -234-6 0.01 21 --34-6 0.01
22 -2-45- 0.01 22 --3-5- 0.01
23 ---4-6 0.01

case. It is observed that all measurement cases reported in Table 2.2 perform well for all levels
of noise as indicated by the lower values of RMS and ROB compared to the complete measure-
ments. The measurement case 1----- shows the least identification errors for all levels of noise.
Nevertheless, there is a tendency for different noisy data sets to converge to different subsets of
measured locations. As such, one cannot rely on a fixed subset of degrees of freedom to work

well for all cases of noisy measurements.
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Figure 2.9 Sensitivity of the parameter estimates during the measurement selection process for
each noisy data set with 10% level of noise that converged to the measurement case 1----- .

The heuristic method presented does not guarantee that the selected subset of degrees of free-
dom is optimal. However, the method assists in the selection of a subset of measured noisy de-
grees of freedom that cause a relatively small errors in the parameter estimates and greatly re-
duces the computational burden of the selection of the best degrees of freedom for parameter
estimation that would otherwise require an exhaustive search of every possible combinations of
the measured degrees of freedom. Although the selected subset of degrees of freedom may not
be the optimal set, it can be regarded as a near-optimal set that allows a successful parameter es-

timation with small identification errors.

2.7 Summary

The key element of most damage detection algorithms is the estimation of the system parame-
ters from measured response. For large and complex structures, sparsity of measured data is often
unavoidable since only a limit number of model degrees of freedom of the structures can be mea-
sured. In general, parameter estimation from the measured modal response of a structure can give
rise to multiple solutions if the data are spatially sparse. The extra solutions of the parameter es-
timation problem are local minima of the objective function and are probably extraneous. Ignor-

ing the possibility of solution multiplicity can lead to erroneous parameter estimation results.
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Identification Error (%)

Figure 2.10 The identification errors of the parameter estimates for the complete measurement
case (Case 0) and the identified subsets of measurement locations from Table 2.2 using three dif-
ferent levels of noise: (a) £= 5%, (b) €= 10%, and (c) &= 20%.

The success of a parameter estimation method depends on the behavior of the algorithm in
the presence of measurement errors. With a selected subset of measurement locations, one can

limit the error in the parameter estimation results. We have presented a general framework of an
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erTor sensitivity analysis to obtain a near-optimal subset of measured degrees of freedom that can
improve the parameter estimation results. We have employed the method of random starting
points to locate the solutions to the parameter estimation problem. In addition, the optimum sensi-
tivity method was used to extract the sensitivity information of each individual solution after

which the global minimum of the parameter estimation objective function can be identified.

We have illustrated through a simple example that the data perturbation scheme and the opti-
mum sensitivity analysis can be used to select noisy subsets of measurement locations that will
produce small errors in the parameter estimates. The algorithm performed well in the illustrated
example for a wide range of noise. Monte Carlo simulations are not required to establish the in-
put-output error relationships of the identified parameters. With a single set of noisy data, the
algorithm will search for a near-optimal subset of measurement locations that yields an improved
set of parameter estimates with lower sensitivities to the measurement noise. In addition, the algo-

rithm provides a natural basis for the parameter grouping scheme.

Based on the results of this chapter, we conclude that the measurement selection process is
essential to a successful parameter estimation and damage assessment from measured modal re-
sponse. The current approach can be used to select the near-optimal sensor location before the
measurements are made or select the measurement set that reduces error in the parameter esti-
mates after the measurements are obtained. Although we have not considered the effect of modal
sparsity on the parameter estimates in the current study, it is possible to incorporate the selection
of measured modes as input to the parameter estimation problem without significant modifica-

tions.
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CHAPTER 3
DAMAGE DETECTION AND ASSESSMENT

3.1 Introduction

Global damage detection methods based upon measured natural modes and frequencies of
a structure have gained considerable attention in the past few decades. Among the recent develop-
ments, the parameter estimation technique has proved effective as a tool to detect damage in
structural systems (see, for example, Hajela and Soeiro 1990b; Agbabian et al. 1991; Hjelmstad
et al. 1995). Damage detection methods based upon parameter estimation often require that the
structure be represented by a parameterized finite element model and that the values of the system
parameters be estimated using a least-squares minimization of either the force residual or dis-
placement residual of the vibration eigenvalue problem. Generally, the number of elements in
the model far exceeds the amount of data available for parameter estimation. Consequently,
grouping similar elements together and associating each group of elements with a certain set of
constitutive parameters are essential to these methods. This process is generally known as param-
eter grouping (Hjelmstad et al. 1992). The problem with parameter grouping is that one does not
know in advance how to group the parameters. Ideally, one wishes to isolate damaged elements
from undamaged elements and, hence, the parameter grouping must eventually reflect this divi-
sion. However. the damaged elements are not known in advance. The first part of a global damage
detection algorithm involves the determination of the best parameter grouping and hence the

isolation of damaged elements.

Structural parameter estimation algorithms generally do not have unique solutions when the
data are spatially sparse (Hjelmstad 1996). Further, the sensitivity of the parameter estimates to
noise in the measured data depends upon the number and density of solutions to the parameter
estimation problem. The existence of multiple solutions to the parameter estimation problem
complicates the parameter grouping process because there are many potential groupings that turn

out to be misleading. Successful isolation of damaged elements depends upon identifying the cor-
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rect solution from among the many choices. In addition, measured data are generally polluted
with random measurement errors. These measurement errors can dramatically affect the accura-
cy of the parameter estimates. Selection of a near-optimal subset of measurements to reduce un-
certainty of the parameter estimates due to measurement noise is essential for a robust damage

detection algorithm (Sanayei et al. 1992).

In this chapter we formulate a practical approach for global damage detection from incom-
plete and noise-polluted modal response of a structure. We propose a new parameter group-up-
dating scheme, based upon the adaptive parameter grouping algorithm of Shin and Hjelmstad
(1994), that has enhanced capability of finding multiple damage locations. The non-uniqueness
of the parameter estimation solutions arising from using sparse and noisy data is acknowledged
and treated by the algorithm. A unified approach, based on the methods described in Chapter 2,
for determining solution clustering is used to find multiple solutions, improve the estimate of the
parameter, and to assess which of the solutions is the best one. This best solution provides the
basis for deciding which parameter group should be subdivided at each level of the damage local-
ization algorithm. The method presented in Chapter 2 is employed for selection of the near-opti-
mal measurement set to reduce error in the parameter estimates. New error functions are
introduced to use the method of selective near-optimal measurement set in conjunction with the
parameter group-updating scheme. To account for the uncertainty of parameter estimates, we as-
sess damage by comparing the statistical distribution of the Monte Carlo sample of the element
parameters for the damaged and undamaged structures. With the proposed damage assessment
scheme, the probability of damage for a structural element can be computed for each specified

level of damage.

3.2 Damage Localization

In this section, the method for isolation of damaged regions from undamaged parts of the
structure based on limited measurement information is described. In particular, we propose a new
parameter group-updating scheme to localize damage in a systematic manner with sparse data
based on the parameter grouping scheme of Shin and Hjelmstad (1994). The present algorithm

is aimed to improve computational efficiency as well as the ability to localize multiple damage
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locations in a structural system, which are major drawbacks of the adaptive parameter grouping
scheme. In the current algorithm, the parameter estimation method described in Chapter 2 is
adopted as the main tool for estimating structural parameters at each step of the damage localiza-
tion process. The non-uniqueness of solutions to the parameter estimation scheme is accounted

for by the algorithm.

3.2.1 A Parameter Group-Updating Scheme

The adaptive parameter grouping scheme (Shin and Hjelmstad 1994) localizes damaged parts
in the structural model by sequentially subdividing parameter groups. The candidate group for
subdivision is the one that results in the greatest drop in the value of the objective function J(x)
as defined in equation (2.4). This approach is based on the observation that the value of the objec-
tive function decreases significantly when the damaged elements are grouped separately from
undamaged elements. Natke (1989) and Natke and Cempel (1991) suggested a similar scheme
that selects the best candidate group for subdivision as a group with the largest deviation of the
value of the group parameter from the baseline value. This approach is not attractive when a com-
parable amount of noise is present in the measured data because the deviation of the value of the

group parameter often represents noise rather than damage.

In the adaptive parameter group-updating scheme, the parameter group is subdivided consec-
utively as shown schematically in Figure 3.1. Starting with the baseline grouping, the algorithm
finds the best candidate group for subdivision at each level of grouping that results in the greatest
drop in J(x). For example, group 1B at level 1 is subdivided because the subdivision of group
1B gives a smaller value of J(x) than group 1A. The process repeats until group 4B at level 4 that
contains a single element is split off. To assure that all damaged elements are detected, the algo-
rithm has to work back up the grouping tree to explore the remaining branches of possible param-
eter groupings. Thus, if group 1A in the illustration presumably contains another damaged ele-
ment, the algorithm will not be able to find it until groups 2B, 3A and 4A have been thoroughly
investigated. In general, the number of different parameter groupings that require further inves-
tigation increases tremendously when the locations of damage in a structure are isolated. Hence,

the algorithm is not computationally efficient for detecting spatially isolated damage locations.
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Figure 3.1 Parameter group subdivision for the adaptive parameter group-updating scheme.

To localize multiple damage more efficiently, we present a new parameter group-updating
scheme as follows. Let us denote the initial baseline grouping as the grouping that contains the
original parameter groups (i.e., the groups that are assigned in accord with the baseline or undam-
aged structural model). Further, let the updated baseline grouping represent the parameter group-
ing that is modified from the initial baseline grouping by including the parameter groups of the
isolated elements identified from the localization process. We denote the parameter grouping at
the ith stage of the parameter group-updating algorithm as Q, = {&, &, ..., £2},} where N;is
the number of parameter groups at subdivision stage i. The next level of grouping .., is deter-
mined from Q, by subdividing one of the parameter groups in accord with a specified criterion
based upon the value of the grouping index J (that will be defined later on) associated with each
parameter grouping. In particular, we select the best candidate group for subdivision as the one
that results in the greatest drop in the value of J after the group subdivision. Moreover, since sev-
eral damaged regions with different levels of severity can coexist within the structural system,

the subdivision must be continued until all of the damaged elements are isolated.

The proposed damage localization scheme is organized as a depth-first search as shown sche-

matically in Figure 3.2. In the illustration, the baseline group 00 in the initial baseline grouping

40



is divided into two groups, 01A and 01B, respectively. These two newly created groups are then
subdivided. The subdivision of group 01B yields a greater decrease in the value of the grouping
index than group 01A and, hence, group 01B is selected as the candidate for further subdivision.
The algorithm repeats until group 04B, which contains a single damage element, is isolated. At
this point, the updated baseline group 10 is formed by eliminating the isolated elements (groups
04A and 04B) from the original baseline group. Note that the isolated elements are disregarded
from any further subdivision. The updated baseline group is then subdivided into groups 11A and
11B, and group 11A is selected as the candidate for subdivision at the next level of grouping. The
subdivision process continues until another damaged part in group 14A of the structural model
is isolated. It can be seen that the backing up process of the adaptive parameter grouping scheme
is eliminated by updating the baseline parameter grouping. This technique improves the ability

of the algorithm in detecting multiple damage locations.

It is important to know when to terminate the group-updating process. Clearly, one would
like to stop the algorithm as soon as all damage locations are detected. From simulation studies,
it is evident that once all of the potentially damaged elements are completely isolated, the values

of the parameter estimates for the updated baseline parameter groups of the current structure vary

Initial Updated
Baseline @ Baseline
Grouping Grouping

Level 1 @ @ Level 1
Grouping Grouping
Level 2 @ @ Level 2
Grouping Grouping
Level 3 @ @ Level 3
Grouping Grouping
Level 4 @ @ Level 4
Grouping Grouping

Figure 3.2 Sequential parameter group subdivision for initial and updated baseline grouping.
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within a certain limit from the corresponding parameter values obtained from the baseline struc-
ture with the same parameter grouping and locations of measurements. If the measured data are
noise-free, the comparison between the values of the system parameters for the baseline structure
and the current structure can be made directly. When the measured data are noise-polluted, the

uncertainty of parameter estimates due to error in the measurements must be taken into account.

In the current algorithm the statistical indices (i.e., mean and standard deviation) of the esti-
mated parameters for the baseline and the current structures are used to account for the effect of
noise in the measurements. Suppose that the values of the parameter estimates are obtained by
using exactly the same conditions (i.e., parameter grouping and location of measurements) as in-
put to the parameter estimation problem for both the current structure and the associated baseline
structure. The deviation of the parameter estimates can be assessed by comparing the two statisti-
cal indices of the system parameters obtained from the sensitivity analysis of parameter estimates
for the baseline and the current structure. The situation is illustrated in Figure 3.3 where each of
the system parameters are assumed to be statistically distributed with certain probability density.
In the illustration, X, denotes the mean of the parameter estimates for an updated baseline parame-
ter group in the current structure; and X, denotes the mean of the parameter estimates for the same
parameter group in the associated baseline structure. The group-updating process is terminated
if the deviation of the system parameters for each updated baseline parameter group satisfies the

following criterion:
Ax, < 0, + 0} 3.1

where Ax, = |X, — X,]| is the deviation of the value of the mean of the group parameters for the
current structure from the baseline structure; g, is the standard deviation of the group parameters
for the current structure; and o7 is the standard deviation of the group parameters for the associat-
ed baseline structure. The definition of Ax, in the above equation implies that the termination

criterion is also satisfied even when the value of X, is larger than X..

3.2.2 A New Criterion for Parameter Group-Updating

In the current damage detection algorithm the near-optimal set of measurement locations

must be selected as input to the parameter estimation problem at each step of the parameter
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Figure 3.3 Assessment of the parameter estimates for the updated baseline parameter group.

group-updating process. Different sets of measurement locations may be selected for different
parameter groupings. Since the value of the objective function J(x) calculated based on equation
(2.4) shows a comparable bias towards the set of measurements with fewer model degrees of free-
dom, it does not provide a fair basis of comparison for selection of the best parameter groupings.
We propose a grouping index J to measure the quality of each parameter grouping in the parame-

ter group-updating scheme. The grouping index is defined as

T=yl,+ (1 —=yVy (3.2)

where y € [0, 1] is the weight factor for the components of the grouping index; J, and 7T, are

defined, respectively, as
s _ 1 BfA—Ag
Ji = mi(w—) (3.3)
Tu= ]—Vl—z | oY - po¢] (3.4)

where 4, and (i) are the ith eigenvalue and eigenvector for the first N, modes of the structure.
The superscripts M and C represent the measured and the computed quantities, respectively. The
measured response of the structure is assumed to be available from the modal testing. The com-
puted eigenvalue A{ and eigenvector &)F can be obtained from a free-vibration eigenvalue analy-

sis of the finite element model of the structure parameterized with the set of parameter estimates
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that has been identified as the mean of the global minima to the parameter estimation problem
corresponding to the current parameter grouping. As described in the previous section, the mean
of the global minima of the parameter estimation objective function can be located by using the

GPE algorithm. Note that we define the norm quantity in equation (3.4) as

o] = Mo (3.5)

in which ¢ is the measured response vector of dimensions N, x 1; and M is the symmetric parti-
tioned mass matrix as defined in Chapter 2. In addition, the scalar p, in equation (3.4) serves as
a scaling factor that scales the components of ¢F to the same level of magnitude as ¢}. The scal-

ing factor p, is derived by differentiating equation (3.4) and set to zero, which leads us to

i = w (3.6)
O MoF
This equation is valid when the ith measured mode shape is scaled such that &)?"TIC'I(’{)}"‘ = 1.Itcan
be seen that the weight factor y in equation (3.2) essentially indicates whether J; or J, dominates
the comparison between different parameter groupings. In the current study, an equal weight is
assignedto J, and J, i.e., wesety = 0.5. Note that each parameter grouping is generally selected
regardless of the topology and geometry of the finite element model of the structure; it is possible
that the values of the parameter estimates for certain group parameters are unnecessarily large
due to the effect of the boundary conditions of the structural model on the parameter estimation
problem. The stiffness parameters for the group of elements which is located near a fixed bound-
ary are usuallyv overestimated. One approach to such a problem is by imposing an upper limit on
the values of the svstem parameters used to calculate AF and (f)? in equations (3.3) and (3.4) at

the baseline values to ensure a reasonable calculation of the grouping index.

3.2.3 Solution Multiplicity and Error Reduction for Sparse and Noisy Data

The proposed damage detection scheme requires that the parameters of the structural model
be estimated for a fixed grouping at each stage of the localization process by solving the parame-

ter estimation problem (2.4). It was shown in the previous chapter that this parameter estimation
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problem can have multiple solutions when the measured data are spatially sparse. The multiplic-
ity of solutions to the parameter estimation problem complicates the parameter grouping process
since one must identify the correct solution to be used for calculation of the grouping index. Ig-
noring the possibility of solution multiplicity leads either to erroneous damage locations or else

the algorithm fails to converge at all.

The non-uniqueness problem of modal parameter estimation is further complicated by the
presence of measurement errors. A single set of noise-polluted data can lead to a biased result
of parameter estimation. The effect of noise on the topography of the objective function is evident
from the study of the sensitivity of parameter estimates when the simulated noise-free data are
subjected to a random perturbation (Hjelmstad 1996). The accuracy of the parameter estimates
is significantly affected by the measurement locations used as input to the parameter estimation
problem (Sanavei et al. 1992; Hjelmstad 1996). In the current study, we adopt the optimum sensi-
tivity method described in Chapter 2 to examine the sensitivity of parameter estimates due to a
random perturbation at each stage of the damage localization process. In addition, we use the inte-
ger programming process presented in Chapter 2 to select the near-optimal subset of measure-
ment locations as input to the parameter estimation problem for each of the parameter groupings
examined duning the parameter group-updating process. Note that the current approach is differ-
ent from the approaches of Cobb and Liebst (1997) and Shi et al. (2000) that prioritize measure-
ment locations according to their ability to localize structural damage based on the eigenvector

sensitivity aralysis with respect to changes in the structural parameters at the element level.

A certain ~ot ot different parameter groupings must be investigated at each stage of damage
localizat ' Tt parameter estimation problem for a particular parameter grouping can be solved
using the . :.t.c mimimization algorithm in conjunction with the random starting point
scheme It auiton the near-optimal set of measurement locations can be selected as input to
the parametc: ¢ ~imation problem. With the procedures described in Chapter 2, the parameter es-
timates associated with the mean of the global minima, X, that corresponds to the near-optimal
measurement set can be identified. These parameter estimates represent the best solution to the
parameter estimation problem for the specified parameter grouping based upon the available

measurement information. The value of the grouping index for this best solution J(X™), as calcu-
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lated in accord with equation (3.2), can be used to compare with the values obtained from the
competing parameter groupings in the set. The parameter grouping with the smallest J(X") is se-
lected as the candidate for further investigation. Note that the measurement selection process to
reduce errors in the parameter estimates is crucial to the parameter group-updating process since

these errors can significantly affect selection of the candidate parameter grouping.

The schematic representation of the use of the parameter group-updating algorithm to local-
ize damage in a structure using sparse and noisy measured modal response is illustrated in Figure
3.4. In the illustration, the GPE algorithm indicates the identification of the mean of the global
minima of the parameter estimation problem for a certain subset of measurement locations and
a fixed parameter grouping through the use of the random starting point scheme and the optimum

sensitivity method.
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Updated Groupi Near-Optimal
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Grouping Q' Measurements

Final
Parameter
Grouping Q"

Figure 3.4 Schematic representation of damage localization process.
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3.2.4 Damage Localization: Implementation

The damage localization process with the use of the proposed parameter group-updating
scheme is summarized in Figure 3.5. In step 1, the given baseline parameter grouping Q" is used
as the initial parameter grouping for an established finite-element model of the investigated
structural system. The values of the initial group parameters x® can be estimated using the GPE
algorithm and the measurement selection process as described in the previous section. Step 2 de-
scribes the termination criterion of the parameter group-updating algorithm in which the value
of the mean of the parameter estimates for each of the updated baseline parameter groups of the
current structure is compared with the value of the mean of the estimated parameters for the same
parameter groups of the baseline structure using the same test conditions. Based on equation
(3.1), the localization process is terminated when the deviation of the values of the mean of the
system parameters for each of the updated baseline parameter groups lies within a specified toler-
ance. To account for the possibility of multiple baseline parameter groups in the structural model,
step 3 is required for selection of the candidate baseline parameter group for subdivision. In addi-
tion, step 4 searches for the candidate parameter group for further subdivision by comparing the
values of the grouping index J associated with the parameter groupings that correspond to subdi-
viding each of the possible parameter subgroups. After the candidate parameter group is subdi-
vided, the parameter grouping is updated and the group parameters are estimated. Notice that the
group level for each updated parameter group is also modified to maintain the hierarchical order
of the parameter grouping. Moreover, in case where the updated baseline parameter grouping
consists of multiple parameter groups, the values of parameters for the updated baseline parame-
ter groups that are not subjected to subdivision must be fixed at the nominal baseline values dur-
ing the parameter group-updating process in step 4. Upon completion of step 4 (i.e., when the
deepest leveled groups contain only the isolated elements), the algorithm proceeds to step S5to
update the baseline parameter grouping with the isolated elements. In particular, the baseline pa-
rameter grouping is modified by incorporating additional groups of the isolated elements to the
original baseline parameter groups. Subsequently, the localization process is repeated until the

termination criterion in step 2 is satisfied.
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a. Set the initial baseline grouping Q based on the given baseline grouping Q.

b. Initialize number of baseline parameter groups N{°.

c. Initialize group level of each parameter group.

d. Estimate parameters x® by measurement selection process and GPE algorithm.

If the grouping termination criterion is satisfied, EXIT.
x©@ and QO are the required solutions.

a.Setk = 1.
b. SetJ;, = 10° (a large number).
¢. Determine the candidate baseline parameter group for subdivision.
do i = 1,.., NO
* set Q% by subdividing the ith baseline group
* estimate parameters x* by measurement selection and GPE algorithm
* compute J(x®)
©if J(x®) < T then Ty, = J(x®) and iy, = i
d. Set Q® and x® by subdividing the baseline group i ;.
e. Update number of parameter groups N
f. Update group level for the subdivided parameter groups.

a.Setk =k + 1.
b. SetJ;, = 10° (a large number).
¢. Determine the deepest level of grouping.
d. If the deepest leveled group contains a single element, go to 5.
e. Otherwise, determine the candidate parameter group for subdivision.
doj=1,2
* set Q¥ by subdividing the jth possible subgroup
* estimate parameters xj?") by measurement selection and GPE algorithm
* compute J(x)
- if 7(xj§")) <JthenJ . = 7(x}(")) and j., =J
f. Set Q% and x® by subdividing the subgroup j -
g. Update N.
h. Update group level for the subdivided parameter groups.
i. Repeat4.

a. Set the updated baseline grouping Q based on the original baseline grouping Q"
and the newly isolated elements.

b. Update N?.

c¢. Update group level for the updated parameter groups.

d. Estimate parameters x® by measurement selection process and GPE algorithm.
e. Goto?2.

Figure 3.5 Parameter group-updating algorithm.
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In general, the number of unknown parameters in the finite element model increases continu-
ously along the parameter group-updating process. Hence, it is essential that the index of identifi-
ability B, as defined in equation (2.13), be examined at each subdivision step to ensure that the
parameter estimation problem (2.4) is possible. In case where < 1 before the termination criteri-
on is satisfied, the localization process will be terminated prematurely. In this case, the isolated
elements associated with the most recently updated baseline grouping can be regarded as the set
of potential damage locations that can be identified based upon the available measurement infor-

mation.

3.2.5 Damage Localization: An Illustrative Example

In this section, a simple example is presented to illustrate the damage localization process.
The example structure is modeled with 16 rectangular elements as shown schematically in Figure
3.6. We assume that each of the elements in the structural model can be characterized with a single
stiffness parameter. Further, we assume that damage is associated with a reduction of the stiffness
parameter at the element level and we denote the location of damage in the structure by the shaded
area. Since the main objective of the present example is to illustrate the parameter group-updat-

ing process, hence the measurement selection process can be disregarded.

Figure 3.6 shows the damage localization process by determining the candidate parameter
group for subdivision at each level of grouping. The initial baseline parameter grouping is shown
in step 1 as the starting point of the parameter group-updating scheme. The group level starts
from £ = 0 as denoted inside the box representing a parameter group. The statistics of the pa-
rameter estimates for the initial baseline parameter group of the current structure must be ex-
amined with respect to the values obtained from the baseline structure using the same parameter
grouping and measurement locations. Based on the termination criterion of equation (3.1), the
localization process is terminated if the deviation of the mean of the system parameters for the
current and the baseline structure lies within a specified tolerance. In step 2, the initial baseline
group is divided in half to produce two subgroups, which are indicated by group level £ = 1.
Subsequently, two different parameter groupings are investigated in step 3 by subdividing the

parameter groups with the deepest level of grouping (£ = 1) from step 2. These groupings are
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compared based upon the value of the grouping index J as defined by equation (3.2). The best
parameter grouping is determined as the one with a smaller value of J . The subdivided parameter
groups in the selected parameter grouping are then assigned with a new group level £ = 2. The
process is repeated until no alternative grouping is available as illustrated in step 5 where each
of the deepest leveled groups (£ = 4) contain only a single element. Notice that the group level

for the singly isolated elements is fixed at £ = @ in step 6, which indicates that these parameter
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Figure 3.6 Schematic illustration of the parameter group-updating process for damage localiza-
tion of a rectangular structure.
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groups are not subjected to any further subdivision. In step 6, the baseline parameter grouping
is updated based on the initial baseline group of step 1 and the newly created parameter groups
for the isolated elements. The group level for the updated baseline group is modified as 4 = 0
as shown in the illustration. The algorithm proceeds from step 6 to step 10 by subdividing the
candidate subgroups in the direction that the value of the grouping index decreases the most. Dur-
ing the subdivision process, the group level of the newly subdivided groups is updated by increas-
ing the value of the previous group level by 1. In step 11, the deepest level of grouping from step
10 is fixed at £ = @, and the baseline grouping is updated with the isolated elements. Since the
difference in the value of the mean of parameter estimates for the updated baseline parameter
group of the damaged and the associated baseline structure falls within a bound set by the values
of the corresponding standard deviations, thus, the localization process stops and the isolated ele-

ments in step 11 are the potential damage locations.

3.3 Assessment of Damage

The next step of the global damage detection and assessment algorithm is the evaluation of
damage in the isolated elements obtained from the parameter group-updating scheme. Each of
the isolated elements from the localization process are regarded as potential damage locations in
the structure that require further investigation. To determine which elements are actually dam-
aged and to what extent. the parameter estimates associated with each of these elements must be
examined. In general. when the measured data are noise-free, an element can be viewed as dam-
aged if its estimated parameter is different from the baseline value. This simple assessment is
complicated by the presence of measurement noise. The noise in the measurements can cause the
estimated parameter for an element to be different from the baseline value even if there is no dam-
age at all. It therefore seems reasonable to incorporate the sensitivity of the estimated parameter

to noise in evaluating the severity of damage.

A simple measure of the sensitivity of the system parameters tonoise is the statistical distribu-
tion of the parameter estimates. Papadopoulas and Garcia (1998) used a comparison between the
probability density functions of the healthy and estimated damage stiffnesses at the element level

toidentify damage. A set of graphical and statistical probability damage quotients were employed
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to determine the confidence level on the existence of damage. The method provides no informa-
tion on the severity of damage in the structural members. Yeo et al. (2000) determined the damage
status of a member in the current structure using a hypothesis test. A critical value of the estimated
parameter, which is determined based upon the statistical distribution of the baseline parameter
estimates, is used as a basis for rejection of the hypothesis that a structural member is not dam-
aged. Both of the proposed approaches approximate the distribution of the estimated system pa-
rameters with a normal probability density function. However, the normal approximation is not

a valid representation of the statistical distribution of the system parameters in a general case.

Letus assume that the statistical distribution of the parameter estimates of element m is known
for both the baseline and the current structures. Further, let us denote a random variable X,, as
the parameter estimate for element m in the current structure with certain parameter grouping and
locations of measurements and a random variable X, as the parameter estimate for the same ele-
ment which corresponds to a parameter estimation problem of the associated baseline structure
using the same parameter grouping and locations of measurements. Damage in element m of the
current structure can be assessed by comparing the statistical distributions of the element parame-
ters in the baseline and the current structure as shown in Figure 3.7 where the random variables
X,.and X, are assumed to be continuous. In the illustration, f,_ and F,_denote the probability
density function and the cumulative distribution function of the random variable X, and f,_de-
note the probability density function of the random variable X,. Element m is regarded as dam-
aged in the event that X,, < X,. This event can be described in terms of probability P(X,, < X..)
to account for the uncertainty of the parameter estimates. The probability P(X,, < X,,)represents
a realistic measure of the state of the structural system. Let us denote x,, and x;, as a current esti-
mate and the a priori known baseline parameter value for element m, respectively. We define the

level of damage as

9, =tn _In (.7)

With the above definition, the state of element m in the current structure can be described by the

event that the true level of damage lies beyond the prescribed level of damage (ie.,
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. = Xy O X,,
Xm — em

Figure 3.7 Assessment of damage based on statistical distribution of parameters.

X, < X, — 6,). Let us assume, for the moment, that X, and X, are discrete random variables.

With a specified level of damage 6, the required probability can be formulated as follows:

PX, <X, = 0,) = Y P(X, <X, = 0,|X. = x,)PX, = x,) (3.8)
allx;,
It is reasonable to assume that the parameter estimates in the current and the baseline structure,

X, and X, are statistically independent; that is,
PX, <X, - 0,|X, =x,) = PX, <x,, — 6..) (3.9)

For continuous X,, and X, equation (3.8) becomes

©

P(X, < X, - 6,) = f Fy, (5 = O (0% (3.10)

0

The quantity F,_(x;, — 6,,) on the right hand side of the above equation is illustrated by the shaded

area under the curve fy_in Figure 3.7 in the range (— «, x;, — 6,]-

To obtain the statistical distribution of a system parameter, the measured data perturbation
scheme of Shin and Hjelmstad (1994) can be used to generate a Monte Carlo sample of the system
parameters. As described in Chapter 2, a series of parameter estimation is performed in the data
perturbation method using the perturbed data sets, which are generated from a given set of mea-

sured eigenvector. Each artificial set of perturbed eigenvector is created by adding a uniformly
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distributed random noise vector to the measured eigenvector. Note that the measured data per-
turbation scheme is applied to obtain the sensitivity information for the cluster of solutions
around the noise-free global minimum of the parameter estimation objective function. Hence,

-

the mean of the global minima X™, previously identified using the GPE algorithm, can be used

as a fixed starting point in the parameter estimation algorithm for each perturbed data set.

3.4 Summary

Global damage detection of structural systems using measured modal response is a compli-
cated problem. For complex structures where the measured data are typically sparse, the limited
quantity of data must be utilized to detect damage locations. The algorithm outlined in this chap-
ter approaches the problem with a parameter group-updating strategy. We have focused on the
question of uniqueness of solutions to the parameter estimation problem with sparse and noisy
data. A unified approach, based upon the method of random starting points and the optimum sen-
sitivity analysis described in Chapter 2, has been adopted to assess the multiplicity of solutions
and the sensitivity of parameter estimates to noise. Selection of noisy subsets of measurement
locations that reduce errors in the parameter estimates has been considered in the algorithm. The
use of the best solution cluster, indicated by the lowest parameter estimation objective function,
as a basis for group subdivision in the damage localization process has been described. A new
parameter grouping index for determining which parameter group should be subdivided at each
level of the parameter group-updating process has been proposed. The sensitivity of the system
parameters to noise in the measurements is explicitly taken into account in developing the ter-
mination criterion of the algorithm. The algorithm assesses the severity of damage in an element
by comparing the statistical distributions of the element parameter for the damaged and the asso-
ciated baseline structures under the same test conditions. To represent a realistic measure of the
state of the structural system, a probability value for the event that the true level of damage in
an element is larger than the prescribed level of damage is calculated for each suspected level of

damage.
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CHAPTER 4
SIMULATION STUDY — A BRIDGE TRUSS

4.1 Introduction

A global damage detection method was presented in the previous chapter based on a parame-
ter estimation method using a finite element model and the measured modal response of a struc-
ture. The algorithm detects the location and size of damage based on the changes in the element
constitutive parameters from the baseline values. The location of damage is determined by using
a parameter group-updating scheme to find the optimal parameter grouping in which the dam-
aged elements are grouped separately from undamaged elements. Upon completion of the param-
eter group-updating process, damage in each of the isolated elements is assessed based on the
statistical distribution of the element parameters for the current and the associated baseline struc-

ture to account for the sensitivity of parameter estimates to measurement errors.

Measured free-vibration response of a structure required in global damage detection is usual-
Iy obtained from a modal test. In the testing process, the test structure is subject to excitations
from which the structural responses are measured. Generally, the measured response of the test
structure tends to be polluted with measurement noise. In the presence of noisy measurements,
the damage detection algorithm will give results different from those with noise-free data. The
noise in the measurements can cause the algorithm to identify the damaged elements as undam-
aged or undamaged elements as damaged, or the algorithm may fail to localize damage at all.
Practical applications of a global damage detection algorithm requires that the effect of measure-

ment noise on the algorithm be taken into account.

In this chapter, the effect of measurement errors on the behavior of the proposed damage
detection and assessment algorithm is examined using a numerical study of a bridge truss. The
simulation study is selected over the real case study because the intent of the present chapter is
not to illustrate the use of algorithm in practice, but rather to study its behavior in the face of noisy

information. Simulation is a method of experimentation that allows such a study to be carried out
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in a controlled environment. In simulation studies, the issue of modeling error is avoided by gen-
erating the measured data with the model that is used as the basis of the damage detection scheme.
Thus, the assumed mathematical model can be taken as a valid representation of the real structure.
In the present study, the measured data are generated by adding proportional random errors with
known statistical properties to the analytical response of the finite element model of the structure.
Different levels of noise in the measurements are investigated by varying the amplitude of the

imposed proportional errors.

In accord with the assumptions of the algorithm, the baseline parameter values must be
known at the outset of the damage detection process. These values may be determined by a prior
application of the parameter estimation algorithm with measured data from the undamaged struc-
ture. The purpose of the baseline parameters is threefold. First, the random starting points used
in identification of the multiple solutions to the parameter estimation problem associated with
each step of damage localization are calculated based upon the values of the baseline parameters.
Second, the baseline parameters provide the basis for termination of the parameter group-updat-
ing algorithm. Finally, the statistical distribution of the baseline parameters is used in an assess-
ment of damage. In addition to the baseline information, field test conditions of the current struc-
ture (e.g.. number and locations of model degrees of freedom with measurement information and
amplitude of noise in the measurements) are essential to the current damage detection algorithm.
The initial set of measured locations is used in selection of the near-optimal subset of measure-
ments for the parameter estimation problem at each damage localization step. In addition, the am-
plitude of measurement noise is used as input to the measured data perturbation scheme (Shin

and Hjelmstad 1994) to examine the sensitivity of parameter estimates to noise.

4.2 Description of the Example Structure

The structure we investigate herein is a two-span continuous truss structure with the geome-
try and topology shown in Figure 4.1. The finite element model of the truss structure consists of
35 elements with 28 degrees of freedom. The baseline properties of the truss members are charac-
terized by four parameter groups that comprise the initial baseline parameter grouping. The sec-

tional area and the mass of the truss members associated with each of the initial baseline groups
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Figure 4.1 Geometry and topology of bridge truss.

are listed in Table 4.1. Note that in addition to the self-weight of the structural members shown
in the table, we assume that the dead load of the structure is uniformly distributed along all 35
members with a mass density equal to 0.017 kips— sec? /ft/ft. Moreover, all members are as-

sumed to have Young’s modulus of 4.176 x 10° kips/ft?.

In the current algorithm, the number of structural vibration modes with measurement infor-
mation and the locations of measurements must be specified as input for the parameter estimation
problem at each step of the parameter group-updating process. We assume that the natural fre-
quencies and mode shapes of the first six modes of the structure are available as our measurement
information. In addition, the mode shapes are assumed to be measured at a certain subset of de-
grees of freedom of the structural model as shown in Figure 4.2. The structural responses obtained
from a free-vibration eigenvalue analysis of the baseline structure at the sampling locations are

shown in Table 4.2. In the table, the ith mode shape ¢, is scaled such that ¢M¢; = 1.

Table 4.1 Baseline properties of bridge truss.

Area Mass
Memb . .
Group ember (in%) (kips— sec? /ft/ft)
1 Top 40.0 0.00425
2 Bottom 48.0 0.00510
3 Vertical 30.0 0.00340
4 Diagonal 320 0.00318
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Figure 4.2 Initial set of measured degrees of freedom for bridge truss.

4.3 Damage Detection and Assessment

Four damage scenarios are investigated in the current example to study the behavior of the
proposed damage detection and assessment algorithm. For each damage case, damage is simu-
lated with the reduction in the sectional area of the truss member. Table 4.3 summarizes different
cases of damage considered in this study. Note that the modal displacements of the damaged
structure sampled at the model degrees of freedom shown in Figure 4.2 are used as the initial set
of measurements during the damage localization process for each of the damage cases in the table.
In addition, based on the parameter group-updating scheme, since the initial baseline grouping

consists of multiple parameter groups, the group parameters for the initial and updated baseline

Table 4.2 Noise-free data for baseline structure.

15t Mode 20d Mode 31d Mode 4" Mode  5th Mode 6th Mode

Natural Frequency (Hz) 4.79 6.09 8.75 10.45 14.37 15.64
Mode Shape
Point A -0.48518  -0.25268 0.65308 0.94340 0.16854 0.27592
Point B -0.58165  -0.67426 -0.37846 -0.05442 0.86871 0.94557
Point C -0.77195  -0.86837 -0.46069 -0.14472 0.05697  -0.10140
Point D -0.55223  -0.57483 -0.10827 0.08419  -0.84991 -0.94273
Point E 0.55223  -0.57483 0.10827 0.08419  -0.84991 0.94273
Point F 0.77195  -0.86837 0.46069 -0.14472 0.05697 0.10140
Point G 0.58165 -0.67426 0.37846 -0.05442 0.86871 -0.94557
Point H -0.48518 0.25268 0.65308 -0.94340 -0.16854 0.27592
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Table 4.3 Different damage scenarios for bridge truss.

Case Damaged Members Noise Level Remarks
I A =12.0 in2 5% - Single damaged member
10 % - Different levels of noise
20 %
I A =384 in? 5% - Single damaged member
10% - Light damage
20 % - Different levels of noise
111 A2 =120 in? 5% - Two damaged members
A4 =100 in? 10 % - Different levels of noise
20 %
v As=8.0 in? 5% ~ Three damaged members
Ap=12.0in2 10 % - Different levels of noise
Ay =100 in? 20 %

groups that are not subjected to subdivision must be fixed at the nominal baseline values during

the search for the damaged element within the subdivided baseline group.

The random starting point method adopted in the current algorithm requires that a sufficient
number of population of random starting points be created in order to assess the multiplicity of
solutions to the parameter estimation problem with confidence. For the present study we found
that a sample of 100 starting points were adequate for finding all of the possible solutions to the
parameter estimation problem at any step of the damage detection algorithm. The corresponding
feasible domain of the parameter estimates is limited by the upper bounds of five times the a priori

known baseline parameter values x* and the lower bounds at zero.

In simulation studies, measurement errors can be added to the simulated response of the struc-
ture either as proportional errors or absolute errors. Proportional errors generate the largest error
at the maximum value of the measurements while absolute errors are added to the simulated mea-
surements regardless of their magnitudes. The actual error in the field falls somewhat between
these two types of errors. Nonetheless, we select the proportional error to represent noise in the

measurements in the current study. In particular, we simulate noisy measurements from the

59



noise-free data in accord with equation (2.23) in Chapter 2. The measurement errors in equation
(2.23) are randomly distributed with a uniform probability density function, which represents a
banded type of error with equal probability of occurrence throughout a predefined limit. For the
current study three different levels of noise, i.e., ¢ =5%, 10%, and 20% are investigated. Note
that the noise-free data are obtained from a free-vibration eigenvalue analysis of the parameter-
ized finite element model of the structure that corresponds with each damage scenario. Further,
since natural frequencies of the structure can be measured accurately in a modal test, we assume
that these measured values are noise-free and that only the measured modal displacements are

polluted with measurement noise.

4.3.1 Damage Case I

The current simulation is for the case where the sectional area of member 12 is reduced by
75% from 48.0 in.? to 12.0 in.? To generate the measured data we perform an analysis of the fi-
nite-element model with the reduced area in member 12. The computed responses are then pol-
luted with proportional random noise using three different amplitudes; & =5%, 10%, and 20%,
respectively, in accord with equation (2.23). For each of the noise levels considered, we generate
three different measurement data sets from the simulated noise-free response. Note that in the
current simulation study, the specific parameter grouping and set of measurement locations deter-
mined by the proposed algorithm are applied to the current and the associated baseline structures
to obtain the statistical information required for an assessment of damage for the individual noisy
data sets. Consequently, the results of the algorithm for each of the noisy data sets can be viewed
as statistically independent; that is, no statistical information on the performance of the algorithm
can be obtained from using a larger sample of the simulated noisy data sets. Although the possibil-
ity that the algorithm will perform poorly with a specified level of measurement noise may be
arrived by generating a larger population of simulated measurement data, the cost of the required
computations is usually prohibitive for large and complex structures. In the present study, three
simulated noisy data sets are sufficient to illustrate the performance of the proposed algorithm

in the presence of the measurement noise.
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The results of the damage localization process are shown in Figures 4.3, 4.4, and 4.5 for dif-
ferent simulated measurement data sets with 5%, 10%, and 20% noise, respectively. For each of
the noisy data sets the near-optimal sets of measurement locations that correspond with the final
parameter grouping are illustrated. In the illustration, the lightened lines indicate the isolated
structural members from the damage localization process. These isolated members represent po-
tential damage locations in the structure that require further assessment. To assess damage in a
structural member, we calculate the probability of the event that the value of the estimated param-
eter for that member is smaller than the value of the corresponding parameter estimate for the
same member in the associated baseline structure to a certain extent. By associating the probabili-
ty value, P(X,, < X;, — 6,,), with each prescribed level of damage 6,,, we can plot the probability
distribution for the range of 0—100% of the level of damage for all members in the structure as

shown in the illustration.

The plot of the probability distribution for a structural member can be divided into three parts
starting from no damage to 100% damage. The constant unit probability value at low levels of
damage indicates that the actual value of the member parameter is actually smaller than the pa-
rameter values associated with the damage at these levels. Likewise, the zero probability value
at high levels of damage imply that there is no chance for the actual severity of damage to fall
within these regions. Generally, the actual level of damage lies in the transition region between
the unit probability and zero probability zones that appears as a slope in the probability distribu-
tion. Note that the sensitivity of amember parameter to the measurement noise can be drawn from
the probability distribution. A sharp drop in the probability values within the transition region
indicates a low sensitivity of the member parameter to noise. A member parameter that is more
sensitive to noise shows a more gradual decrease in the probability values within the transition
zone. Hence, it might be difficult to identify a precise level of the actual damage from the proba-
bility distribution when the level of noise in the measurements is high. However, one can always
describe the suspected level of damage in terms of probability to ensure the level of confidence

in the results.

It can be seen from Figure 4.3 that damage in member 12 is successfully located and quanti-

fied for all three data sets with 5% noise. From the plot of the probability distribution, the severity
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.3 Probability distribution in Damage Case I w
for three noisy data sets (a), (b), and (c) with 5% noise.




Figure 4.4 Probability distribution in Damage Case I with respect to different levels of damage
for three noisy data sets (a), (b), and (c) with 10% noise.



Figure 4.5 Probability distribution in Damage Case I with respect to different levels of damage
for three noisy data sets (a), (b), and (c) with 20% noise.
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of damage in member 12 is suspected to fall in the range of 60—90%. The level of confidence
in identifying a suspected leve} of damage as the actual damage severity is indicated by the value
of P(X,, < X, — 8,). For example, the probability value of 0.85 for 65% damage in member
12 indicates that it is 85% likely that the actual value of the member parameter is smaller than
the value of the estimated parameter for member 12 with 65% damage. For the current data sets,
members 2, 7, 22 and 27 are also identified as potential damage locatio'ns from the localization
process. However, based on the probability distribut'ion for the structural members, it is con-
cluded that all these isolated menibers are not likely to be damaged except for member 7 using
data set (c), which indicates a slight chance of the member being lightly damaged. Nonetheless,

the probability of damage in member 7 is small compared with that of member 12.

For all measurement cases with 10% and 20% noise, as shown in Figures 4.4 and 4.5, member
12 is also identified as damaged. In addition, it is observed that as the level of noise in the mea-
surements increases, the decrease in the probability values for a structural member in the transi-
tion region becomes more gradual. Hence, it is more difficult to identify the actual leve] of dam-
age in an isolated member. Nevertheless, it is seen from the resuits of the current simulation that
all undamaged members show significantly lower probability of being damaged compared with

the actual damaged member.

The set of measurement locations used to obtain sensitivities of the parameter estimates for
the current and the baseline structures in an assessment of damage depends upon the final parame-
ter grouping, which is identified from the damage localization process. Generally, different pa-
rameter groupings-and corresponding sets of measured locations may be obtained from using dif-
ferent noisy data sets. Hence, €ach noisy data set requires one independent run of the proposed
damage localization algorithm, and an individual comparison must be made between the current

and the baseline structure to assess the severity of damage for each noisy data set.

4.3.2 Damage Case II

In this damage scenario, the sectional area of element 12 is reduced by 20% from 48.0 in.?
t0 38.4 in.?, which can be regarded as lightly damaged compared to the previous case. Three dif-

ferent levels of measurement noise are investigated for the current damage case as summarized
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in Table 4.3. For each of the noise levels investigated, we generate three different noisy data sets

in accord with equation (2.23).

The damage detection and assessment results are illustrated in Figure 4.6 for the three mea-
surement cases with 5% noise. For all measurement cases member 12 can be correctly identified
as damaged. The estimated severity of damage falls in the range of 5—30%. For measurement
case (a), member 32 shows a tendency of being slightly damaged. However, there is no constant
unit-probability zone in the distribution of P(X,, < X;, — 8,,) for this member. Without the exis-
tence of this nunit-probability zone for the assessed member, one cannot be absolutely positive
that damage exists in that member. Hence, it is concluded that the deviation of the parameter esti-

‘mate for member 32 is merely due to the measurement noise.

The results of the damage detection and assessment algorithm using different simulated data
sets with 10% and 20% noise are illustrated in Figures 4.7 and 4.8, respectively. For all measure-
ment cases with 10% noise, the algorithm fails to identify damage in member 12 even though the
member has been identified as potential damage location from the damage localization process.
Furthcrmoré, the damage localization algorithm was unable to isolate any elements at all with
20% noisy measurements. Hence, it is evident from the current exainple that the ability of the
proposed algorithm to detect damage in a structural system is limited by the severity of the dam-

age in the structural components and the magpitude of noise in the measurements.

4.3.3 Damage Case II1

As the third example, let us consider the case where two structural members are damaged,
i.e., members 12 and 14. Each of the assumed damage locations are selected from different base-
line parameter groups in order to test the capability of the damage detection and assessment algo-
rithm in detecting multiple damage with spatially isolated locations. Damage is simulated with
75% reduction in the sectional area of both members 12 and 14. Three levels of measurement
noise are considered: ¢ =5%, 10%, and 20%. We simulate three noisy measured data sets for

each level of noise.

The results for the simulated noisy data sets with three levels of noise are shown in Figures

4.9—4.11. In these illustrations, the near-optimal set of measurement locations obtained from
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Figure 4.6 Probability distribution in Damage Case II with respect to different levels of damage
for three noisy data sets (a), (b), and (c¢) with 5% noise.
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Figure 4.7 Probability distribution in Damage Case II with respect to different levels of damage

for three noisy data sets (a), (b), and (c) with 10% noise.

68



P(X,,
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for three noisy data sets (a), (b), and (c) with 20% noise.
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the measurement selection process are shown for each measurement case. The lightened truss
members represent the potential damage locations obtained from using the parameter group-up-
dating algorithm. The parameter estimates for these members are subject to evaluation based
upon the distribution of P(X,, < X, — 6,,). In all the measurement cases with 5% noise the algo-
rithm perform well as evident from the correct identification of the actual damage locations. The
algorithm was able to isolate members 12 and 14. In addition, the suspected level of damage lies
in the vicinities of the actual damage level. However, it is seen that some of the isolated members
from the localization process, other than the actual damaged members, also show the probability
of being damaged. After a detail examination of the values of P(X,, < X, — 6,,) for the isolated

members, it is concluded that there is little chance of damage in these members.

The results of the algorithm using the simulated noisy data sets with 10% noise illustrates that
the actual damage can be accurately located and quantified for all three measurement cases. In
addition, based on the distribution of P(X,, < X, — 0,,) for the structural members, all undam-
aged elements are correctly identified as undamaged. It is clear that when the existence of the
constant unit-probability zone is taken into account, the possibility of mistakenly identifying the
false damage locations as damaged is eliminated. Similar results are shown for the 20% noisy
measurement cases. In these cases, the probability distribution for the isolated members shows

higher sensitivities of the parameter estimates to the measurement noise.

4.3.4 Damage Case IV

This damuss case consists of three damaged members. Member 5 is regarded as an additional
damaged member trom the previous case. The sectional area of member 5 is reduced by 75% from

32.0in to >+ NMembers 12 and 14 are assumed to have the same level of damage as in Case

Figures .12 -+ 14 show the probability distribution, P(X,, < X, — 6,,), for each level of
damage 6,, in the structural members using different sets of simulated noisy measurements. It is
seen that all damaged members can be detected for all measurement cases with 5% noise. Some

undamaged members show the possibility of being slightly damaged. However, since there is no

70



Figure
ort

4.9 Probability d

y distribution in Damage Case III with respect to different levels of damage
hree noisy data sets (a), (b), and (c) with 5% noise.



Figure 4.10 Probability distribution in Damage Case III with respect to different levels of damage

for three noisy data sets (a), (b), and (c) with 10% noise.



Figure 4.11 Probability distribution in Damage Case III with respect to different levels of damage
for three noisy data sets (a), (b), and (c¢) with 20% noise.
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constant unit-probability zone in the probability distribution for these members, they are identi-
fied as undamaged. From the results of the damage detection algorithm using different measured
data sets with 10% and 20% random noise, it is observed that the parameter group-updating algo-
rithm fails to isolate member 5 as a potential damage location. For 10% noisy measurements, the
algorithm incorrectly identifies member 2 as an additional damaged members from the actual
ones. The same sort of results are shown for the 20% noisy measurements. It is suspected that
failure of the algorithm to isolate member 5 leads to an inaccurate assessment of damage in other

members.

It is evident from the present example that the performance of the proposed damage detection
and assessment algorithm decreases as the level of noise in the measurements increases. The cur-
rent algorithm detects and assesses damage in a structure based upon changes in the structural
response as a result of damage. When the measured response of the structure is significantly pol-
luted with noise, these changes are difficult, if not impossible, to detect. In other words, the essen-
tial information for detection of damage in the structure are swamped out by noise in the measure-
ments. In addition, damage in an insensitive structural member, such as a diagonal member of
a truss, is generally more difficult to detect compared with the sensitive members. However, as
evident from the above example, any insensitive but damaged member can be detected by the

developed algorithm when the amplitude of noise is small enough.

4.4 Summary

The damage detection and assessment procedure developed in the previous chapter has been
tested with a certain set of simulation case studies for a two-span continuous truss structure.
Through simulation studies, the procedure of assessing damage in the presence of the measure-
ment noise was illustrated. Evaluation of the statistical distribution of the parameter estimates
at the potential damage locations has proved reliable as a method for assessing whether damage
is detectable above the noise in the measurements. From the simulation results, it is concluded
that the proposed algorithm can detect and assess damage effectively using sparse and noisy data.

Although there are always cases where actually damaged elements are detected as undamaged
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Figure 4.13 Probability distribution in Damage Case IV with respect to different levels of damage
for three noisy data sets (a), (b), and (c) with 10% noise.



=

Figure 4.14 Probability distribution in Damage Case IV with respect to different levels of damage
for three noisy data sets (2), (b), and (c) with 20% noise.




or actually undamaged elements are detected as damaged, the results has been shown to improve

dramatically when the level of noise in the measurements decreases.

One of the advantages of the present algorithm is that the algorithm takes into account explic-
itly the multiplicity of solution to the parameter estimation problem associated with each step of
the damage localization process. In general, parameter estimation problems can have multiple
solutions when the measured data are spatially sparse. Without considering the possibility of
solution multiplicity, the algorithm may lead to erroneous damage locations or the algorithm may
fail to converge at all. Furthermore, the systematic statistical evaluation of damage in the current
algorithm allows an assessment of damage in a more reliable manner by incorporating the sensi-
tivity of the member parameter due to the current measurement conditions. With the present
method, damage in all members of a structure can be evaluated regardless of their sensitivities,
even though damage in an insensitive member might be difficult to detect if the noise level is high.
In addition, the algorithm can evaluate the sensitivity of each member parameter simultaneously
with the parameter group-updating process. Hence, the sensitivities of the member parameters

need not be determined before attempting to detect damage in the structure.
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CHAPTER 35
SIMULATION STUDY — A TOWER TRUSS

5.1 Introduction

It has been shown in the previous chapter that the proposed damage detection and assessment
algorithm can be used to evaluate damage in a two-span bridge truss effectively even when the
measured data are spatially sparse and are noise-polluted to a certain level. In this chapter, the
algorithm is tested with an additional structure: a tower truss. In the current example, the structure
is modeled with simple truss elements whose responses are measured in a three-dimensional
coordinate space. It is expected that the modes of behavior of the tower truss and, hence, the out-
come of the corresponding parameter estimation problem will be significantly different from
those of the bridge truss in the previous example. The main objective here is to study the perfor-
mance of the present algorithm in detecting damage in a different type of structures using sparse

and noisy measurements.

Numerical simulation studies are employed herein to examine the capabilities of the algo-
rithm in detecting and assessing damage in the tower truss. Damage is simulated with a reduction
in the sectional area of the truss members. The modal response of the tower truss is computed
from a free-vibration eigenvalue analysis of the finite element model of the structure with re-
duced sectional areas in certain truss members in accord with each damage scenario. Different
levels of noise in the measurements are investigated by adding different amplitudes of propor-

tional random errors to the calculated structural responses.

5.2 Description of the Example Structure

Let us consider a tower structure with pinned base as illustrated in Figure 5.1. The structure
is modeled as a three-dimensional truss with 76 elements and 72 degrees of freedom. The initial
baseline parameter grouping for the finite-element model of the structure consists of nine param-

eter groups. The sectional area and the mass of the structural members in each baseline parameter
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Figure 5.1 Geometry and topology of tower truss.
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group are summarized in Table 5.1. Note that the mass of the truss members is assumed to be
known in advance and does not change as a result of damage. In addition, the initial baseline pa-
rameter grouping in Table 5.1 is employed to enhance computational efficiency of the parameter
group-updating scheme in localizing multiple damage locations in the truss structure. By assign-
ing a small number of structural members to each baseline parameter group, the number of pa-
rameter grouping steps required in localization of potential damage locations within each of the
baseline parameter groups is reduced, and hence the algorithm is able to isolate multiple damage
more efficiently. In the current study we assume that all the truss members have Young’s modulus

of 4.176 x 10° kips/ft?.

As mentioned in the previous chapter, the initial subset of model degrees of freedom of the
structure must be specified for selection of the near-optimal set of measurement locations in the
damage detection process. We shall assume that the modal displacements of the structure are mea-
sured at the degrees of freedom of the finite-element model as shown in Figure 5.2. In addition,
we assume that the natural frequencies and mode shapes at the sampling locations for the first
ten modes of the structure are given as our measurement information. The modal response of the
structure obtained from a free-vibration eigenvalue analysis of the baseline finite-element model
is illustrated schematically in Figure 5.3. In the illustration, o, denotes the natural frequency of

the ith vibration mode of the structure.

Table 5.1 Baseline properties for tower truss.

Group Member g;leza) (kips—-l\;[:zi Jft/5t)
1 5, 7, 9,11,17, 19,21, 23 40.0 0.004032
2 29,31, 33,35,41,43, 45,47 40.0 0.004032
3 53,55,57,59,65,67,69,71 40.0 0.004032
4 1-4,13-16, 25-28 20.0 0.002016
5 37-40, 49-52 20.0 0.002016
6 61-64, 73-76 20.0 0.002016
7 6, 8,10, 12, 18, 20, 22, 24 22.0 0.002218
8 30, 32, 34, 36, 42, 44, 46, 48 22.0 0.002218
9 54, 56, 58, 60, 66, 68, 70, 72 22.0 0.002218
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Figure 5.2 Initial set of measured degrees of freedom for tower truss.

5.3 Damage Detection and Assessment

To investigate the behavior of the global damage detection and assessment algorithm, we per-
form two simulation case studies: a single damage and multiple damage. The detail of these case
studies arc summarized in Table 5.2. In accord with the assumption of the algorithm, damage is
simulated with 4 1o duction in the sectional area of the truss members. It should be noted that all
of the deyrecs of trec Jom associated with the nodes of members 1—4 in the finite-element model
of the structurs «ar b disregarded from the stiffness assembly because of the pin supports. Con-
sequently th: m. «ta! response of the structure is independent of the stiffness contribution from
members 1 ~4 honoc the stiffness parameters of these members need not be estimated and can

be fixed at the nomanal baseline values.

In the current simulation studies, we use 100 random starting points to assess the multiplicity
of solution to the parameter estimation problem at each step of the parameter group-updating

algorithm. The mean and covariance of the parameter estimates associated with each of the indi-
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Mode 3 Mode 4 Mode 5
w, = 4.87Hz w, = 10.00 Hz ws; = 19.70 Hz

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
wg = 20.67 Hz w,; = 20.67 Hz wg = 30.15Hz w, = 42.57 Hz Wy = 43.93Hz

Figure 5.3 Natural frequencies and mode shapes for the first ten modes of baseline tower truss.
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Table 5.2 Different damage scenarios for tower truss.

Case Damaged Members Noise Level Remarks
I Ay5=16.01in.2 1% - Single damaged member
5% - Different levels of noise
10%
1I Ap=441n.2 1% - Two damaged members
As7;=20.0in.2 5% - Lower levels of noise

vidual solutions are computed using the optimum sensitivity method of equations (2.20) and
(2.21) by specifying the amplitude of random perturbation with respect to the level of noise in
the simulated data. The noisy measurements are simulated by adding a uniform white noise with
a specified range of noise amplitudes to the noise-free analytical responses of the structure ob-
tained from a free-vibration eigenvalue analysis of the finite-element model for each damage

Case.

5.3.1 Damage Case I

The current simulation is for the case where the sectional area of member 45 is reduced by
60% from 40.0 in.2 to 16.0 in.2 The measured natural frequencies are assumed to be noise-free
and the measured modal displacements are polluted with three levels of noise; ¢ =1%, 5%, and
10%, respectively. Four noisy measured data sets are simulated from the noise-free data in accord

with equation (2.23) for each level of noise.

The results of the damage detection algorithm are shown in Figure 5.4 for the four noisy data
sets with 1% noise. The identified near-optimal set of measurement locations is shown in the il-
lustration for each of the data sets investigated. Note that the lightened lines in the illustration
represent the isolated structural members obtained from the damage localization process. From
the results of the simulation study, it is seen that damage in member 45 is successfully located
and quantified for all the simulated 1% noisy data sets. The suspected level of damage in member

45 falls in the range of 50 —65%. Although member 61 shows the probability of being slightly
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damaged using data set (b), there is no clear existence of the constant unit-probability zone in

the distribution of P(X,, < X, — 6,,) for the member. Hence, it is concluded that there is little

chance of damage in this member.

The results of the algorithm when the level of noise in the measurements is increased to 5%
are shown in Figure 5.5. For all measurement data sets, the algorithm was able to localize member
45 and identify it as damaged. Even though the sensitivity of the member parameters to noise
increases with the noise level, all undamaged members are still correctly identified as undam-
aged. For 10% noise, the results are shown in Figure 5.6 for the four noisy measurements €x-
amined. It can be seen that the simulation results using measurements with 10% noise exhibit
higher variation in the parameter estimates compared with the cases with lower levels of noise
as evident from a more gradual decrease in the probability distribution. In addition, using data

set (b), member 66 is identified as an additional damaged member.

5.3.2 Damage Case II

In this damage case the sectional area of member 42 is reduced from 22.0 in.> to 4.4 in.2and
the sectional area of member 57 is reduced from 40.0 in.? to 20.0 in.? Only two levels of measure-

ment noise, i.e., ¢ =1% and 5% are investigated in the present case study.

The results from using the proposed damage detection and assessment algorithm are shown
in Figures 5.7 and 5.8 for different noisy data sets with 1% and 5% noise levels, respectively. For
all simulated noisy data sets with 1% noise, both members 42 and 57 are identified as damaged
with correct estimates of the severity of damage. All undamaged elements are correctly identified
as undamaged. Simulation studies of the damage detection and assessment algorithm using dif-
ferent measured data sets with 5% noise show similar results as for the cases with 1% noise. The

algorithm is shown to be successful in detecting damage at both actual damage locations.

There are some groups of undamaged members that show the probability of being slightly
damaged although the individual members in these groups are not isolated from the damage local-
ization process. The damage localization algorithm fails to identify the location of these poten-
tially damaged members because the parameter estimates for these member groups are insensi-

tive to parameter group subdivision. In this case, the variation in the distribution of

85









P, < X, - 6m)
re
7
rl
re
Member ID
Number

Figure 5.5 Probability distribution in Damage Case I with respect to different levels of damage
for noisy data sets (a) and (b) with 5% noise.
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Figure 5.5 (cont.) Probability distribution in Damage Case I with respect to different levels of
damage for noisy data sets (c) and (d) with 5% noise.
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Figure 5.6 Probability distribution in Damage Case I with respect to different levels of damage
for noisy data sets (a) and (b) with 10% noise.
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Figure 5.6 (cont.) Probability distribution in Damage Case I with respect to different levels of
damage for noisy data sets (c) and (d) with 10% noise.
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Figure 5.8 Probability distribution in Damage Case II with respect to different levels of damage
for noisy data sets (a) and (b) with 5% noise.
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Figure 5.8 (cont.) Probability distribution in Damage Case II with respect to different levels of
damage for noisy data sets (c) and (d) with 5% noise.
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P(X,. < X,, — 6,) is mainly due to the effect of noise in the measurements, not from the actual

damage in these members.

It should be noted that the computation time used in detection of damage in the three-dimen-
sional tower truss is significantly larger than the planar bridge truss in Chapter 4. This computa-
tional burden is due to the fact that the size of the analytical matrices required in the parameter
estimation algorithm grows larger as the number of elements and degrees of freedom required
to model the structural system increases. In addition, when the number of model degrees of free-
dom increases, a larger number of degrees of freedom with measurement information is usually
required as the initial set of measured locations, and hence, the number of different sets of mea-
sured locations that must be examined during the measurement selection process is increased.
Since each member of the population of starting points in the random starting point method re-
quires one execution of the parameter estimation algorithm for each of the sets of measurement
locations being investigated, the computation time required by the current algorithm to detectand
assess damage can be large for complexed structural models with many measured degrees of free-

dom.

5.4 Summary

The damage detection and assessment procedure of Chapter 3 has been tested with an addi-
tional structure which is represented with a more complex finite-element model. The structure
is a three-dimensional tower truss that requires a larger number of unknown parameters to char-
acterize the behavior of the structural response compared with the previous example. With a cer-
tain set of simulation case studies, we have illustrated the use of the proposed algorithm to detect
possible damage sites in the tower truss and to assess the severity of damage at these potential
damage locations. We have shown that the proposed algorithm can detect and assess damage ef-
fectively even when the measured data are noise-polluted and when the locations of damage are

sparsely isolated throughout the spatial domain of the structure.

In the parameter group-updating scheme, the intial baseline parameter grouping can be modi-
fied to facilitate multiple damage detection. As illustrated in the simulation study of a tower truss,

computational efficiency of the damage localization algorithm can be improved by assigning a
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small number of structural members to the individual baseline parameter groups. With the intu-
itive assignment of the baseline parameter grouping, the number of parameter group-updating
steps required for the isolation of potentially damaged members within each of the baseline pa-
rameter groups can be reduced. Consequently, the algorithm can identify the locations of damage

within the structure more efficiently.
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CHAPTER 6
CONCLUSIONS

Global damage detection of structural systems using measured modal response is a compli-
cated problem. Various difficulties can arise in the practical application of global damage detec-
tion in which field measurements of the structural responses are obtained through testing. The
focuses of the present research are on the sparseness of the measured data and the presence of the
measurement noise. We have presented an approach to the problem of global damage detection
of a structure based upon the measured modal information that are spatially sparse and noise-pol-
luted. We have assumed that a structure can be characterized with a parameterized finite element
model with known topology and geometry. We have adopted the technique of parameter grouping
to reduce the number of unknown parameters in the structural model. In addition, damage was
regarded as a reduction in the element stiffness parameter. Hence, the nonlinearity effect of the

structural damage was not taken into account.

The key element of the present damage detection algorithm is the estimation of the system
parameters from the measured modal response. For large and complex structures, sparseness of
measured data is often unavoidable since only a limit number of degrees of freedom of the struc-
ture can be measured. We have implemented an output error estimator as the tool for parameter
estimation in the face of data sparseness. The question of uniqueness of solutions to the parameter
estimation problem was addressed. In particular, we have adopted the random starting point

scheme to assess the multiplicity of the parameter estimation solutions.

The success of the output error estimator also depends on the behavior of the algorithm in the
presence of the measurement errors. With a selected subset of measurement locations, one can
limit error in the parameter estimation results. We have presented a general framework of an error
sensitivity analysis to obtain a near-optimal subset of measured degrees of freedom that can im-
prove the outcome of parameter estimation. The method of random starting points was employed

to locate the noise-free multiple solutions to the parameter estimation problem. Consequently,
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the optimum sensitivity method was used to extract the sensitivity information for the individual
solutions and the global minimum of the parameter estimation objective function was identified.
In addition, we have illustrated through a simple example that the proposed method can be used
to select the noisy subsets of measurement locations that will produce small errors in the parame-

ter estimates. The algorithm performed well in the illustrated example for a wide range of noise.

For structural systems where the measured data are spatially sparse, the limited quantity of
data must be utilized to detect damage. The algorithm outlined in this dissertation approached
the problem with a parameter group-updating strategy. A unified approach, based upon the ran-
dom starting point scheme and the optimum sensitivity analysis, has been proposed to assess solu-
tion multiplicity and sensitivity of parameter estimates to noise. The use of the best solution clus-
ter, indicated by the lowest objective function for the mean of the solutions inside the cluster, as
a basis for group subdivision in the damage localization process has been described. In addition,
we have proposed a new index for determining which parameter group should be subdivided
within the parameter group-updating process. The sensitivity of the system parameters to noise
was explicitly taken into account in developing the termination criterion of the algorithm. The
algorithm assessed damage of an element by comparing the statistical distribution of the element
parameter for the damaged and the associated baseline structures under the same test conditions.
One advantage of the proposed algorithm is that the statistical information for the baseline struc-

ture can be obtained simultaneously with the parameter group-updating process.

We have demonstrated the use of the damage detection and assessment algorithm on two ex-
ample structures: a two-span continuous bridge truss and a three-dimensional tower truss. Nu-
merical simulation studies were employed to examine the capabilities of the algorithm in detect-
ing and assessing damage. Noisy measurements were simulated by adding different amplitudes
of proportional random errors to the noise-free analytical modal response of the structures. It has
been shown that the algorithm was able to detect and assess damage in the structural systems suc-
cessfully even when the measured data are spatially sparse and noise-polluted. Although there
are always cases where actually damaged elements are detected as undamaged or actually undam-
aged elements are detected as damaged, the results has been shown to improve dramatically when

the level of noise in the measurements decreases.
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One of the advantages of the parameter group-updating scheme is that the intial baseline
grouping can be modified to facilitate the detection of multiple damage locations in a structure.
As illustrated in the simulation study of a tower truss, the computational burden of the algorithm
can be greatly reduced by further subdividing the original baseline parameter groups into a set
of groups with smaller size. With the reassigned baseline grouping, the number of parameter
grouping steps required to localize potential damaged elements within each of the baseline groups
is reduced and hence the algorithm is able to isolate the locations of damage more efficiently.
Furthermore, the algorithm takes into account explicitly the multiplicity of solution to the param-
eter estimation problem, which is associated with each step of the damage localization process.
In general, parameter estimation problems can have multiple solutions when the measured data
are spatially sparse. Ignoring the possibility of solution multiplicity can lead to erroneous damage

locations or the algorithm can fail to converge at all.

Another advantage of the present algorithm is the systematic statistical evaluation of system
parameters for damage. The statistical framework allows an assessment of damage in a more reli-
able manner by incorporating the sensitivity of each element parameter due to the current mea-
surement conditions. With the present method, damage in all the structural members can be eval-
uated regardless of their sensitivities, even though damage in an insensitive member might be
difficult to detect if the noise level is high. Moreover, the proposed algorithm can evaluate the
sensitivity of each element parameter simultaneously with the process of parameter group-updat-
ing. Hence, the sensitivities of the members need not be determined before attempting to detect

damage in the structure.

From simulation studies, it has been found that the computation time used by the proposed
algorithm in detecting damage can increase enormously as the structural model becomes more
complex. In general, this computational burden depends on the number of degrees of freedom
and number of elements in the finite element model of the structure. Furthermore, in the current
algorithm each random starting point requires one execution of parameter estimation for each of
the patterns of measurements being investigated. Hence, the computation time is directly propor-
tional to the specified number of random starting points and the number of measurement loca-

tions in the initial set of measurements for the measurement selection process at each step of the
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parameter group-updating algorithm. Possible alternatives should be investigated to improve the
computation efficiency of the algorithm. One possible approach to reduce the computational bur-
den of the current algorithm is to improve the solution algorithm for the parameter estimation

problem.

In the current research, numerical simulations were performed on the cases where each struc-
tural element is modeled with a single stiffness parameter. In general, some structural models may
have element stiffness matrices that depend upon different modes of deformation. These different
modes of behavior can give rise to multiple element constitutive parameters that may have differ-
ent levels of sensitivity to the measurement noise. Further investigations need to be carried out
to examine the behavior of the proposed damage detection and assessment algorithm in the cases

where a structural member is modeled with multiple stiffness parameters.

Damage in a structure generally presents itself in the form of geometric defects (e.g. crack)
of a structural member. It therefore seems intuitively clear that the present approach in which we
modeled damage as a reduction in the constitutive parameters cannot do better than an approach
that geometrically models defects. However, identification of the geometric defects in a solid
body requires that nonlinearity of the defects be taken into account and hence is more difficult,
if not impossible, than identification of the constitutive parameters. The merit of the present ap-
proach lies in its generality. One needs not know in advance the general information of a defect
before attempting to assess it. In addition, the method can be applied to a variety of defects with-

out requiring a reformulation and is well-suited to the problem of damage detection in large and

complex structures.
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APPENDIX

A NUMERICAL EXAMPLE USING
THE DATA PERTURBATION SCHEME

A.1 Introduction

In this section we investigate the use of the data perturbation scheme on noisy measurements
to simulate the sensitivity of the noise-free multiple solutions of the output error estimator to the
measurement noise. A two-parameter model is selected as an illustrative example since the sensi-
tivity of each solution can be characterized on a two-dimensional plot. The aim of this study is
to verify the use of the random perturbation on a given measured data set to obtain the statistical
properties of the parameter estimates associated with each of the identified multiple solutions as

previously discussed in Chapter 2.

A.2 A Two-Parameter Model

Let us consider a six-story shear building with fixed base as illustrated in Figure A.1. The
structural model has six degrees of freedom, the horizontal translations at the story levels, from
which some of them are measured. The structure is parameterized with two parameters,
x = {x,, x,}". The stiffness of the ith story, which belongs to parameter group %, is given by
k, = x,k,. The nominal properties of the structure is chosen such that k,/m, = 1.2 /sec. The

actual values of paramaters are given as X = {2.0, 1.0} ™.

The results from a free-vibration eigenvalue analysis of the nominal model of the structure
are shown in Table A.1 where the ith mode shape ¢, is scaled such that $M¢, = 1.In the present
example, the natural frequencies and mode shapes of all six modes of the structure are considered
to be available as our noise-free database. The set of noisy data shown in the table are generated
by adding uniform random variates to the noise-free data in accord with equation (2.22) using
two levels of noise amplitudes: ¢ = 10% and 20%, respectively. Throughout the study we will
assume that the natural frequencies can be measured with negligible error compared with the

mode shapes and are considered to be noise-free.
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Figure A.1 The six-degree-of-freedom shear building.

A.3 Organization of the Study

To investigate the behavior of the data perturbation scheme on noisy measurements, three dif-
ferent patterns of measurements as illustrated in Figure A.2 are used as input to the parameter
estimation problem. For each pattern of measurements, the noise-free and the individual simu-
Jated noisy data sets (Case I—Case VI) are investigated separately. The six simulated noisy data

sets are used to represent a sample of the noise-polluted data from field measurements.

For each of the seven available data sets, two distinct types of simulations were performed.
The first type concerns identification of the multiplicity of solutions for each pattern of measure-
ments. In these simulations, the random starting point scheme is used to find various solutions
for each of the data sets considered. In particular, we use 100 random starting points for each data
set to generate a sample of solutions. Thus, each case requires 100 executions of the parameter
estimation scheme. The second type of simulation concerns evaluation of the sensitivity of the
identified multiple solutions to a series of random perturbations. We perturbed each simulated
noisy data sets for each pattern of measurements in accord with equation (2.14) using four differ-
ent amplitudes of random perturbation, a =0.05, 0.10, 0.20, and 0.40, respectively. For the
noise-free data sets, only two perturbation amplitudes, & =0.10 and 0.20, were used to study

the sensitivity of the noise-free solutions to the measurement noise. In the current simulations,
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Table A.1 Noise-free and simulated noisy measurements.

. 10% Noise 20% Noise
Mode Noise-free

Case 1 Case II Case III Case IV Case V Case VI

1 Natural Frequency (Hz) 0.33612 0.33612 0.33612 0.33612 0.33612 0.33612 0.33612
Mode Shape

Level 1 0.03263 0.02947 0.03459 0.03270 0.02630 0.03499 0.03285

Level 2 0.06373 0.06298 0.05918 0.06561 0.06224 0.06313 0.06868

Level 3 0.09183 0.08524 0.09755 0.08272 0.07865 0.08305 0.07928

Level 4 0.13937 0.13403 0.14398 0.13369 0.12868 0.16721 0.16349

Level 5 0.17380 0.18781 0.15990 0.16125 0.20182 0.14085 0.16832

Level 6 0.19186 0.18380 0.18961 0.18006 0.17575 0.21421 0.21750

2 Natural Frequency (Hz) 0.88279 0.88279 0.88279 0.88279 0.88279 0.88279 0.88279
Mode Shape

Level 1 -0.09481 ~0.09003 -0.09923 -0.08608 -0.08525 -0.10016 -0.11137

Level 2 -0.15884 -0.17411 -0.15718 -0.17283 -0.18938 -0.12727 -0.13791

Level 3 -0.17129 -0.16528 ~0.18802 -0.18737 -0.15927 -0.15727 -0.13781

Level 4 -0.08495 -0.08956 -0.09008 -0.07807 -0.09418 -0.07532 -0.06974

Level 5 0.05656 0.05162 0.06054 0.05927 0.04667 0.05650 0.06401

Level 6 0.16133 0.16557 0.14869 0.16719 0.16980 0.18965 0.18703

3 Natural Frequency (Hz) 1.41151 1.41151 1.41151 1.41151 1.41151 1.41151 1.41151
Mode Shape

Level 1 -0.10439 -0.09627 -0.10186 -0.09813 -0.08815 -0.11015 -0.12407

Level 2 -0.12212 -0.11700 -0.11211 -0.11899 -0.11187 -0.12685 -0.12122

Level 3 -0.03847 -0.03743 -0.03877 -0.03885 -0.03638 -0.03502 -0.03858

Level 4 0.19270 0.21032 0.19100 0.19314 0.22793 0.19000 0.18225

Level 5 0.10393 0.10238 0.10983 0.10204 0.10082 0.08945 0.12079

Level 6 -0.15740 -0.15256 -0.15201 -0.16625 -0.14773 -0.12959 -0.13790

4 Natural Frequency (Hz)  1.90783 1.90783 1.90783 1.90783 1.90783 1.90783 1.90783
Mode Shape

Level 1 0.12439 0.13348 0.11345 0.12459 0.14257 0.13697 0.12561

Level 2 0.06013 0.05568 0.05593 0.05784 0.05123 0.06758 0.06831

Level 3 -0.09533 -0.09183 -0.10072 -0.10473 -0.08834 -0.08157 -0.09383

Level 4 -0.11710 -0.12426 -0.12332 -0.11051 -0.13141 -0.13312 -0.12098

Level & 0.21631 0.22073 0.21231 0.23240 0.22515 0.21289 0.22079

Level 6 -0.10639 -0.11342 -0.09963 -0.11574 -0.12045 -0.12285 -0.11134

5 Natural Frequenoy (Hz)  2.16294 2.16294 2.16294 2.16294 2.16294 2.16294 2.16294
Mode Shape

Levei ! -0.18499 -0.16716 -0.18815 -0.19645 -0.14932 -0.15604 -0.20692

Level 2 -0.00938 -0.00894 -0.00953 -0.01001 -0.00849 -0.00973 -0.00796

Leve, & 0.18452 0.17571 0.18371 0.19944 0.16690 0.16309 0.14932

Levei 4 -0.14704 -0.16011 -0.15107 -0.13941 -0.17318 -0.16413 -0.11765

leve! € 0.09464 0.09643 0.09301 0.08669 0.09822 0.07637 0.08939

Lesel ¢ -0.03265 -0.03149 -0.03526 ~-0.03412 -0.03033 ~0.03661 -0.02775

6 Natural Frequensy (Hzy 2.82794 2.82794 2.827%4 2.82794 2.82794 2.82794 2.82794
Modc Shape

Level § -0.17133 -0.18844 -0.15476 -0.18768 -0.20556 -0.18374 -0.16942

Level 2 0.22824 0.21966 0.21480 0.20714 0.21109 0.19195 0.18947

Level 3 -0.13273 -0.12588 -0.13067 -0.12218 -0.11904 -0.13792 -0.10692

Level 4 0.02988 0.02969 0.02778 0.02922 0.02949 0.02732 0.03243

Level 5 -0.00666 -0.00682 -0.00646 -0.00686 -0.00699 -0.00626 -0.00688

Level 6 0.00118 0.00122 0.00114 0.00127 0.00126 0.00119 0.00102
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Figure A.2 Different patterns of measurements for the parameter estimation problem.

we generate 50 perturbed measurements for each amplitude of perturbation and start the estima-
tion from 100 random starting points. Hence, each case requires 5000 executions of the parameter

estimation algorithm.

A.4 Simulation Results

The results from investigating the three different sets of measurement locations with all six
modes are shown in descending orders of the number of measured degrees of freedom of the
structural model, starting with the case with full measurements (Case A). Note that the minimum

number of measured degrees of freedom is three (Case C) in the current investigation.

The case of complete measurements is illustrated in Figure A.3 for all noisy data sets with
four levels of perturbation. The results from the noise-free data set are also shown in the illustra-
tion for the two levels of perturbation considered. Figure A.3 illustrates the two-dimensional pa-
rameter space x, — x,. The circle in each figure is the solution associated with the smallest value
of objective function for the unperturbed measurements. In addition, estimates from the individu-

al trials of random perturbation are plotted as small triangles.

It should be noted that the solution to the parameter estimation problem for the complete mea-
surement case is unique for all unperturbed data sets. The 100 random starting points converged

to the same solution in the absence of the random perturbation. The uniqueness of solution holds
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Figure A.3 Noisy solutions for complete measurements (Case A) using different noisy data
sets: (a) Noise-free + (@ = 0.10); (b) Noise-free + (a=0.20); (c) Case I + (= 0.05); (d) Case
I+ (a=0.10); (¢) Case I + (a = 0.20); (f) Case I + (a = 0.40).
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Figure A.3 (cont.) Noisy solutions for complete measurements (Case A) using different noisy
data sets: (g) Case II + (a = 0.05); (h) Case II + (&= 0.10); (i) Case II + (= 0.20); () Case
I + (o= 0.40); (k) Case III + (o= 0.05); () Case III + (@ = 0.10).
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Figure A.3 (cont.) Noisy solutions for complete measurements (Case A) using different noisy
data sets: (m) Case III + (&= 0.20); (n) Case III + (= 0.40); (0) Case IV + (a= 0.05); (p) Case
IV + (= 0.10); (q) Case IV + (e = 0.20); (r) Case IV + (a = 0.40).
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Figure A.3 (cont.) Noisy solutions for complete measurements (Case A) using different noisy
data sets: (s) Case V + (&= 0.05); (t) Case V + (a= 0.10); (v) Case V + (a= 0.20); (v) Case
V + (= 0.40); (w) Case VI + (a = 0.05); (x) Case VI + (a = 0.10).
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Figure A.3 (cont.) Noisy solutions for complete measurements (Case A) using different noisy
data sets: (y) Case VI + (&= 0.20); (z) Case VI + (a = 0.40).

true even when each data set is subjected to a random perturbation. The scatter of the estimates
comes from the difference in the magnitude of the random vector for different trials of perturba-
tion. In other words, all the 100 random starting points converged to the same solution for a partic-
ular trial of perturbation. However, this statement is not true for the cases where the solutions hit
the upper bound because these solutions get stuck at the bound before converging to the true ba-
sins of attraction. This situation is shown in most noisy data sets with high level of perturbation,
e.g. a >0.20. For noise-free measurements, the unperturbed solution is located at exactly the
same location as the true solution. The unperturbed solution for each noisy data set is in the vicini-
ties of the true solution, except for Case V where the solution shows the greatest bias. One can
observe that the distribution of the perturbed solutions in the two-dimensional parameter space
for each noisy data set is similar to the noise-free case if the unperturbed solution is close to the
correct solution. In particular, the simulation results show remarkable similarities between each
of the 10% noisy data sets (Case I—Case III) and the noise-free data set using the same level of
perturbation (a =0.10). Also, the scatter of the perturbed solutions for the noise-free data set
with @ =0.20 is almost the same as the 20% noisy data sets (Case IV—Case VI) with a =0.20.
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However, in case V most perturbed solutions get stuck at the upper bound and thus the true scatter

of solutions is not clear from the plot.

Let us turn our attention to the five-measurement case (Case B). The simulation results for
this case are shown in Figure A.4. In the illustration, the open squares represent the identified
multiple solutions of the parameter estimation problem from 100 random starting points and each
circle denotes the best solution associated with the smallest value of objective function. While
the number of unperturbed solutions has increased over the complete measurement case, the scat-
ter in the estimates has been reduced to some degree. This aspect of the parameter estimation
problem has been studied in detail by Hjelmstad (1996). As shown in Figure A.4, the same sort
of results have been observed again as in the case with complete measurements. All unperturbed
solutions for the 10% noisy data sets lie close to the unperturbed solutions for the noise-free data.
Also, the scatter of the three 10% noisy data sets (Case I—Case IIT) with a =0.10 resembles the
noise-free case with the same level of perturbation. Moreover, the results of the 20% noisy data
sets (Case IV—Case VI) with a =0.20 are close to the noise-free data set with a =0.20. The
solutions show a bit larger scatter using the amplitude of perturbation a =0.20 compared with
a =0.10. For all data sets, the scatter of solutions usinga = 0.40 is considerably large compared
with the lower levels of perturbation. It is therefore suggested that an upper limit on the level of

perturbation should be specified to get any meaningful results.

The results of the case with three measurements (Case C) are illustrated in Figure A.5. The
scatter of the parameter estimates has is dramatically reduced while the number of multiple solu-
tions is considerably larger compared with Case A and Case B. There is a clear connection be-
tween the scatter of solutions for the noisy data sets and the noise-free data that are subjected to
the same level of perturbation. Also, the scatter of the parameter estimates for each of the six noisy
data sets with high level of perturbation (a > 0.20) is quite large compared with the noise-free

data with lower levels of perturbation.

To summarize the effect of the data perturbation scheme, let us assume that the scatter of the
solutions to the parameter estimation problem for the noise-free data with a =0.10 and

a =0.20 replicates the sensitivity of the noise-free solutions to the measurement noise with
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Figure A.4 Noisy solutions for the five-measurement case (Case B) using different noisy data
sets: (a) Noise-free + (a=0.10); (b) Noise-free + (a= 0.20); (¢) Case I + (@ = 0.05); (d) Case
I+ (a=0.10); (¢) Case I + (&= 0.20); (f) Case I + (a = 0.40).
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Figure A.4 (cont.) Noisy solutions for the five-measurement case (Case B) using different
noisy data sets: (g) Case Il + (e= 0.05); (h) Case II + (@ = 0.10); (i) Case I + (o= 0.20); (j)
Case II + (& = 0.40); (k) Case III + (a = 0.05); (1) Case III + (o= 0.10).
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Figure A.4 (cont.) Noisy solutions for the five-measurement case (Case B) using different
noisy data sets: (m) Case III + (= 0.20); (n) Case III + (= 0.40); (0) Case IV + (= 0.05);
(p) Case IV + (@ = 0.10); (q) Case IV + (&= 0.20); (1) Case IV + (a = 0.40).
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Figure A.4 (cont.) Noisy solutions for the five-measurement case (Case B) using different

noisy data sets: (s) Case V + (@ = 0.05); (t) Case V + (@ = 0.10); (u) Case V + (a=0.20); (v)
Case V + (& = 0.40); (w) Case VI + (@ = 0.05); (x) Case VI + (= 0.10).
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Figure A.4 (cont.) Noisy solutions for the five-measurement case (Case B) using different noisy
data sets: (y) Case VI + (a = 0.20); (z) Case VI + (a = 0.40).

¢ =10% and ¢ =20%, respectively. Further, let each of the six simulated noisy data sets repre-
sent real data sets obtained from a modal testing of the structure. It is concluded that by applying
the data perturbation scheme on a single noisy data set, one can actually simulate the sensitivity
of the noise-free parameter estimation solutions to the measurement noise. The amplitude of the
random perturbation should be selected as the same as the level of noise in the measured data.
In addition. the data perturbation scheme shows better results when the parameter estimation

problem has multiple solutions.

A.5 Summary

We have illustrated through a simple example that the data perturbation scheme can be used
as a simulation 100l for replicating the sensitivity of the noise-free parameter estimation solutions
to the measurement noise. In the simulation environment, noisy measurements are simulated by
adding random proportional errors with known amplitudes to the noise-free analytical response
of a finite-element model of the structure. This concept was used as a basis for developing the

error sensitivity analysis of solutions to the parameter estimation problem in Chapter 2. The error
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sets: (a) Noise-free + (a= 0.10); (b) Noise-free + (= 0.20); (c) Case I + (a= 0.05); (d) Case
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Figure A.5 (cont.) Noisy solutions for the three-measurement case (Case C) using different
noisy data sets: (g) Case II + (@ = 0.05); (h) Case II + (@ = 0.10); (i) Case II + (@ = 0.20); (j)
Case II + (@ = 0.40); (k) Case III + (a = 0.05); (1) Case III + (= 0.10).
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Figure A.5 (cont.) Noisy solutions for the three-measurement case (Case C) using different
noisy data sets: (m) Case III + (&= 0.20); (n) Case III + (@ = 0.40); (0) Case IV + (a'=0.05);
(p) Case IV + (a = 0.10); (q) Case IV + (= 0.20); (1) Case IV + (a = 0.40).
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Figure A.5 (cont.) Noisy solutions for the three-measurement case (Case C) using different
noisy data sets: (s) Case V + (a=0.05); (t) Case V + (a= 0.10); (u) Case V + (a=0.20); (v)
Case V + (a = 0.40); (w) Case VI + (a = 0.05); (x) Case VI + (= 0.10).
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Figure A.5 (cont.) Noisy solutions for the three-measurement case (Case C) using different noisy
data sets: (y) Case VI + (e = 0.20); (z) Case VI + (a = 0.40).

sensitivity analysis was subsequently incorporated into the global damage detection algorithm

developed in Chapter 3.
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